Contents lists available at ScienceDirect

International Journal of Mass Spectrometry

journal homepage: www.elsevier.com/locate/ijms

Halogenated silanes, radicals, and cations: Theoretical predictions on ionization energies, structures and potential energy surfaces of cations, proton affinities, and enthalpies of formation

Liming Wang*, Yi-Liang He

College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China

ARTICLE INFO

Article history: Received 4 June 2008 Received in revised form 10 July 2008 Accepted 11 July 2008 Available online 22 July 2008

Keywords: Halosilanes Ionization energy Proton affinity Enthalpy of formation

ABSTRACT

Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations ($SiH_xX_v^{0,+1}$, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IE_as), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH₃Br⁺ and SiH₂Br₂⁺. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH₃X, SiH₂X₂, and SiHX₃, the G3(CC) adiabatic IE₃s to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silvlene cations from silanes. The G3(CC) results for $SiH_x^{0,+1}$ agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH₂Cl⁺, SiHCl₂⁺, and SiCl₃⁺ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiF_x^+ and $SiCl_x^+$ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiF_x⁺ (x=2–4). The G3(CC) IE_a and PA of SiF₄ are significantly different from previous experimental and theoretical studies; however, they are supported by current benchmark calculations at level of CCSD(T)/CBS + core-valence correction. © 2008 Elsevier B.V. All rights reserved.

1. Introduction

Halogenated silanes, free radicals, and cations are of interest because of their importance in chemical vapor deposition and surface etching of silicon-containing semiconductor materials. The free radicals and cations play important roles and have been detected in these processes, especially in radio frequency (RF) or plasma-enhanced deposition and etching processes where free radicals and cations have been detected [1–13]. Information on structure and thermodynamics of the silanes, radicals, and cations would provide useful guidelines for selection of processing conditions [9,14]. The ionic silicon species are also of great interest in structural chemistry, where theoretical studies [15–23] on XH_4^+ (X = C, Si, Ge, Sn), SiH_mF_n⁺, GeH_mF_n⁺ and GeH_mCl_n⁺ have revealed large structural distortions to their neutrals. In additional to their occurrence in RF and plasma processes, the ion chemistry is an important method in measuring the bond energies of the neutral species [24].

Because of their importance, there have been many experimental studies on the structure and thermodynamic properties of small silicon-containing compounds. The enthalpies of formation of halogenated silanes have been obtained from the combustion, dissolution, and chemical equilibrium studies, and from empirical linear interpolation estimations. The early results were evaluated and collected in data compilations such as CATCH [25], JANAF-1985 [26], and a review by Walsh [27]. Recently, Hilderbrand et al. [28] reported new enthalpies of formation for SiCl_x and SiBr_x (x = 1–3) from the gas-phase equilibrium study.

^{*} Corresponding author. Tel.: +86 20 87112900; fax: +86 20 87112906. *E-mail address:* wanglm@scut.edu.cn (L. Wang).

^{1387-3806/\$ –} see front matter $\ensuremath{\mathbb{C}}$ 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.ijms.2008.07.004

The experimental studies on the energetics of the ionic species are relatively less. In principle, the enthalpies of formation of cations can be readily obtained from the adiabatic ionization energies (IE_as) and the enthalpies of their neutrals. Unfortunately, it is fairly difficult to obtain the adiabatic ionization energy experimentally, especially for silanes, because of the possible large structural changes from neutrals to cations as being inferred from fluorosilanes [29] and halogermanes [23,30]. The early photoelectron spectroscopic studies measured the vertical IEs instead. Reliable measurements on IE_a were available only to SiH_x^{0,+1} (x = 1-4) from photoionization mass spectrometry study by Berkowitz et al. [31]. There were also reports on IE_a(SiX, X = F,Cl,Br) from photoionization efficiency spectroscopy or VUV spectroscopy of Rydberg states [32–37].

Direct determinations of the enthalpies of formation for cations have been performed on SiH_x⁺ [38,39], SiF_x⁺ [40–42], and SiCl_x⁺ [43,44] from collision-induced dissociation and/or charge-transfer studies. Adiabatic IE_as were derived from the energy differences between neutrals and cations, or *vice versa*. In these studies, neither the enthalpies of formation for SiF_x^{0,+1} or SiCl_x^{0,+1} nor the adiabatic IE_as was well defined, and the results carries large uncertainties. Another ion-chemistry study by Murthy and Beauchamp measured the enthalpy difference between SiH₂Cl⁺, SiHCl₂⁺, and SiCl₃⁺ [45,46]. Large discrepancy exists between experiments for these radicals and cations, e.g., $\Delta_f H_{298 \text{ K}}^2$ (SiCl₃) of -334.7 ± 8.4 , -390.4 ± 16.7 , and $\geq -351.5 \pm 8.4 \text{ kJ/mol}$ have been reported by Walsh [27], JANAF-1985 [26], and Hilderbrand et al. [28].

With limited experimental studies, quantum chemistry calculations have been used to predict the enthalpies of formation of fluorinated and chlorinated silanes and free radicals [17,29,47-59] and of cations $SiH_xF_y^+$, SiF_x^+ , and $SiCl_x^+$ [29,51,53–55,60,61], while none on brominated species. Theoretical studies have found large discrepancies to as well as occasional agreement with the experimental results. On the other hand, agreements between theoretical predictions at levels from BAC-MP4 to Gaussian-3 model chemistry are reasonable. The purpose of present systematic quantum chemistry study on halogenated silanes, radicals, and cations is to predict several quantities pertaining to ion chemistry, including structure. the adiabatic ionization energy, the proton affinity (PA), and the enthalpy of formation, etc. The potential energy surfaces of cations were also explored on the interest of appearance energy of ion fragment and reaction kinetics. The results were compared with and were used to assess the reliability of the previous experimental measurements. Calculations have employed the Gaussian-3 (G3) model chemistry [62-64], and all density functional and molecular orbital calculations were carried out using Gaussian 03 suite of programs [65].

2. Computational details

The geometries are optimized at B3LYP/6-31+G(2df,p) level and the electronic energies are evaluated with the G3 model chemistry [62–64], in which QCISD(T) is replaced by CCSD(T). Transition states are confirmed by the visualization of the displacement vector of the vibrational mode with imaginary frequency or following the intrinsic reaction coordinates for transition state from SiH₃⁺ to SiH⁺-H₂. No relativistic effects are included except the spin–orbit corrections, which are obtained from spectroscopic data [66] and applied to atomic and diatomic species only. The spin–orbit interaction is negligible for other nonlinear polyatomic species. The calculation level closely resembles the G3(CC)//B2df model chemistry (the same high-level correction parameters are used as A = 6.688, B = 3.007, C = 6.763, D = 1.107 mHartree) [64], and is denoted as G3(CC) here. For silylene radicals and transition states of silyl cations, unrestricted wavefunctions are used for post-Hartree–Fock calculations whenever RHF-wavefunction instability is found. The newly developed G3X/G4 method is not used because of the over-correction for fluorinated species in extending the basis set from G3Large to G3ExtraLarge at Hartree–Fock level, e.g., ΔE (HF) = E(HF/G3ExtraLarge) – E(HF/G3Large) is –5.77 mHartree for SiF₄, –1.88 mHartree for SiCl₄, and –2.25 mHartree for SiBr₄. Similar effect has been observed in GeF₄, where ΔE (HF) for GeF₄ is significantly larger than those for GeCl₄ and Ge(OH)₄ [23].

The enthalpies of formation of the neutrals are obtained directly from the G3 atomization energies. For SiX, thermal correction due to Λ -doublet is also included. The enthalpies of formation of cation M^+ are obtained using the following equation:

$$\Delta_{\rm f} H^{\circ}_{\rm OK}({\rm M}^+) = {\rm IEa}({\rm M}) + \Delta_{\rm f} H^{\circ}_{\rm OK}({\rm M})$$

$$\Delta_{f} H^{\circ}_{298 \, \mathrm{K}}(\mathrm{M}^{+}) = \Delta_{f} H^{\circ}_{0 \, \mathrm{K}}(\mathrm{M}^{+}) + (H^{T} - H^{0})_{\mathrm{M}^{+}} - \sum_{\mathrm{Element}} (H^{T} - H^{0})_{\mathrm{Std}}$$

where $(H^T - H^0)_{M^+}$ and $(H^T - H^0)_{Std}$ are the thermal corrections to cation and the elements at their standard states. The "Ion Convention" for $\Delta_f H^\circ_{298 \text{ K}}(M^+)$ is adopted here. Note that the "Electron Convention" has been used in previous experimental and theoretical predictions and in JANAF table; therefore their values at 298 K will be lowered by 6.2 kJ/mol when compared with our G3(CC) ones.

Note that in the prediction of the enthalpies of formation, the uncertainty of $\Delta_{\rm f} H^{\circ}_{0\rm K}$ (Si, g) = 446.0 ± 8 kJ/mol will be transferred to $\Delta_{\rm f} H^{\circ}_{0\rm K}$ of other species, albeit the uncertainties should be less than 8 kJ/mol. The uncertainties for ionization energies and proton affinities are expected to be similar to that of G3 method, e.g., ~5 kJ/mol (0.05 eV), and being slightly large for transition barriers. The charges and orbital interactions are analyzed using natural bond orbital package NBO 3.0 as implemented in Gaussian 03 [67].

3. Results and discussion

The geometries are optimized at B3LYP/6-31+G(2df,p) level, and the harmonic vibrational frequencies are evaluated at the same level (Tables S1-S3). Similar to our previous studies on germanium system [23,30], B3LYP tends to predict slightly longer bond lengths than MP2, CCSD(T), and experiments, e.g., B3LYP $r_{e}(Si-F)$ and $r_{\rm e}(\rm Si-Cl)$ of 1.630 and 2.092 Å are longer than those of 1.601 and 2.058 Å by experiments [66] and of 1.613 and 2.074 Å by CCSD(T)/aug-cc-pVQZ (AVQZ) [51,53], respectively. For SiF⁺, SiCl⁺, and SiBr⁺, the B3LYP bond lengths of 1.551, 1.972, and 2.129 Å are longer than the experimental values of 1.526, 1.944, and 2.129 Å [68–70]. For SiF⁺, SiF₂⁺, and SiF₃⁺, B3LYP ones of 1.551, 1.547, and 1.527 Å are also longer than RCCSD(T)/AVQZ of 1.538, 1.534, and 1.520Å [53]. The small differences in B3LYP geometries result in small G3(CC) energy changes, e.g., G3(CC) energy for SiF₃⁺ at CCSD(T)/AVQZ geometry is lower by 1.4 kJ/mol than that at the B3LYP one. Similar effect has also been observed for Ge-system where MP2 structures are slightly more stable [30]. B3LYP method also tends to underestimate the vibrational frequencies for Si-F/Cl/Br stretching modes and to overestimate the ones for Si-H stretching modes, e.g., the B3LYP values of 2126, 993 and 651 cm⁻¹, *vs* the experimental ones of 2041.8, 1050.7, and 678.2 cm⁻¹ for SiH⁺ [71], SiF⁺ [68], and SiCl⁺ [69], respectively. The B3LYP classical and non-classical structures of [SiHF]⁺, [SiH₂F]⁺, and $[SiHF_2]^+$ are also in good agreement with the MP2(Full)/6-311G(d,p) and CCSD(T,Full)/cc-pVTZ ones [22], even though the B3LYP bond lengths are again longer than the MP2 and CCSD(T) ones.

3.1. Ionization energies of SiX (X = H, F, Cl, and Br) (Fig. 1, Table 1)

Ionization removes the unpaired p-electron in Si(³P) and SiX. The G3(CC) IE of 8.12 eV for Si-atom agrees excellently with the experimental value of 8.15 eV [66]. From Si(³P) to SiH, the unpaired p-orbital is perturbed slightly, resulting in a small change of IE from Si-atom (8.12 eV) to SiH (7.94 eV by G3). In SiF, SiCl, and SiBr radicals and cations, the strong orbital interaction between the half-filled or empty p-orbitals of Si-atom and the doubly occupied p-orbital of F/Cl/Br-atom leads to reduced IEs for SiF (7.41 eV), SiCl (7.34 eV), and SiBr (7.33 eV, Table 1). Ionization removes one electron almost exclusively from Si-atom, e.g., NBO charges of 0.75e on Si of SiF and 1.73e of SiF⁺; while the strong orbital interaction transfers partial charges from Cl/Br to Si-atom in SiCl+/SiBr+, e.g., NBO charges of 0.48e on Si of SiBr and 1.29e of SiBr⁺. The stronger orbital interactions in cations result in significantly shortened bond lengths and increased vibrational frequencies from SiX to SiX⁺ and minor changes from SiH to SiH⁺ (1.534–1.520 Å and 2015–2126 cm⁻¹) where no such orbital interaction exists.

The G3(CC) IE_a(SiH) of 7.94 eV agrees with the direct photoionization determination of 7.91 \pm 0.01 eV [31] and the indirect determination of 7.89 \pm 0.01 eV from the enthalpies of formation of SiH⁺ and SiH [38]. Agreement with the latter is fortuitous since the G3(CC) enthalpies of formation for SiH and SiH⁺ are 363.0 and 1129.1 kJ/mol at 298 K, being almost equally lower than the experimental values of 376.6 and 1145.6 kJ/mol. The G3(CC) value agrees also with the MP4/6-31G(d,p) prediction of 7.90 eV using isogyric reaction [29].

The Armentrout group has reported adiabatic IE_as for SiF and SiCl from the measured $\Delta_{\rm f} H^{\circ}$ of SiF⁺ and SiCl⁺. The results were dubious because of the large uncertainties and discrepancies between the measurements. Two IEs each were reported for SiF $(7.54\pm0.16\,\text{eV}$ [40] or $7.08\pm0.10\,\text{eV}$ [41]) and SiCl $(7.44\pm0.40\,\text{eV}$ [43] and 6.79 \pm 0.24 eV [44]). Alternatively, IE_a(SiF) of 7.31 \pm 0.02 eV from VUV Rydberg spectra [32] was supported by theoretical predictions of 7.21 eV at MP4/6-31G(d,p) level [29], 7.36 eV at CCSD(T)/CBS level [54], and 7.41 eV at G3(CC) level. For IE_a(SiCl), Bosser et al. [33] have estimated value of 6.82 eV from only two Rydberg states, and later revised it to 7.368 eV with more Rydberg states [34]. Using mass-selected photoionization efficiency spectroscopy, Marijnissen et al. obtained a much precise value of $7.3296 \pm 0.0014 \text{ eV}$ [35], which is supported by our G3(CC) prediction of 7.34 eV and by previous CCSD(T)/aug-cc-pVQZ prediction of 7.30 eV [51]. For SiBr, Bosser et al. [33] and Kuznetsova et al. [37] reported IE_a of 6.67 and 7.3 eV from Rydberg spectroscopy. The large error in IE_a(SiCl) by Bosser et al. disregards their reliability on IE_a(SiBr), while G3(CC) prediction of 7.33 eV supports the value by Kuznetsova et al.

3.2. Ionization energies of SiH_xX_y and potential energy surfaces of $[SiH_xX_y]^+$ (X = F, Cl, Br, x + y = 2) (Figs. 1–3, Table 1)

Ground states of silylene radicals are singlet, even though RHFwavefunction instability is found for these radicals except for SiF₂. Ion complex structures Si⁺–XH, being located here at B3LYP level, agree closely with the previous ones at MP2(Full)/6-311G(d,p) and CCSD(T,Full)/cc-pVTZ levels [22]. Unlike [GeH₂]⁺, [GeHF]⁺ and [GeHCI]⁺, where the most stable structures are ion complexes as Ge⁺–H₂, Ge⁺–FH, and Ge⁺–ClH [23], the most stable silylene cations have their normal divalent structures, due primarily to the stronger Si–H bonds than Ge–H ones. At G3(CC) level, the adiabatic IE_as of silylenes increase rapidly with fluorination and much slower with chlorination and bromination. IE_a(SiHBr) is even smaller than IE_a(SiH₂). For IE_a(SiH₂), Berkowitz et al. [31] suggested two values of 9.15 ± 0.02 or 9.02 ± 0.02 eV and most probably 9.05 eV, which is supported by G3(CC) prediction of 9.09 eV and previous MP4/6-31G(d,p) of 9.06 eV [29]. Berkowitz et al. [31] also observed IE_a(³SiH₂)=8.24 ± 0.02 eV, with which our G3(CC) prediction of 8.24 eV agrees. No experimental study was reported on IE_a of SiHF, SiHCl, or SiHBr. For SiHF, Ignacio and Schlegel [29] obtained IE_a=9.48 eV at MP4/6-31G(d,p) level, which agrees with our G3(CC) value of 9.47 eV. Antoniotti et al. [22] found that SiHF⁺ is more stable than Si⁺–FH by 96.7 kJ/mol at CCSD(T,Full)/aug-cc-pVTZ (AVTZ) level, agreeing excellently with our G3(CC) value of 96.9 kJ/mol.

Westwood [72] first reported $IE_a(SiF_2) = 10.78 \pm 0.05 \text{ eV}$ from photoelectron spectroscopy, and Fisher et al. [41] later obtained $10.84 \pm 0.13 \text{ eV}$ from charge transfer reaction between Xe and SiF₂⁺. These values are supported by theoretical predictions of 10.77 eV at MP4/6-31G(d,p) level [29], 10.74 eV [54] and 10.81 eVat CCSD(T)/CBS level [60], and 10.91 eV at G3(CC) level. For SiCl₂, Fisher and Armentrout [44] obtained IE_a of $9.81 \pm 0.10 \text{ eV}$ from the measured $\Delta_f H^{\circ}$ (SiCl₂⁺), being slightly higher than previous G2 prediction of 9.74 eV [51] and current G3(CC) of 9.64 eV. IE(SiCl₂) obtained from electron impact ionization ($10.93 \pm 0.10 \text{ eV}$) [73] and photoelectron spectroscopy (10.35 eV) [74] are obviously too high. There is no direct measurement on IE(SiBr₂) but an estimation of $8.5 \pm 1.5 \text{ eV}$ [75], compared to G3(CC) prediction of 9.33 eV; while the value of $12 \pm 1 \text{ eV}$ obtained from electron impact ionization [76] was too high.

The lowest fragmentation channel of SiX_2^+ (X = F, Cl, Br) is SiX⁺ + X, and dissociations into Si⁺ + X₂ require much higher energies, e.g., 303.3, 198.5, and 157.2 kJ/mol vs 811.3, 465.9, and 411.1 kJ/mol. The fragmentation behaviors of SiHX⁺ are slightly complicated with the existence of low-lying ion complexes Si⁺-XH. The potential energy surfaces of SiHX⁺ are shown in Fig. 3. For SiH₂⁺, channel Si⁺+H₂ is expected to dominate the collisioninduced dissociation, being similar to that of GeH₂⁺ [21,23]; while for SiHX⁺ (X = F, Cl, Br), channels SiX⁺ + H will be the major ones, being different from those of GeHF⁺ and GeHCl⁺, where the ion complex structures Ge⁺-XH are lower in energy than normal divalent cations and the lowest dissociation channels are Ge^+ + HX. The potential energy surfaces show that it is likely to form Si⁺-H₂ and Si⁺-FH complexes from reactions of Si⁺ with H₂ and HF under low collision energies, and unlikely to form Si⁺-ClH or Si⁺-BrH from Si⁺+HCl or HBr. Instead, reaction of Si⁺ with HCl/HBr will uniquely form SiCl⁺/SiBr⁺ + H with negative energy barrier.

3.3. Ionization energies of SiH_xX_y and potential energy surfaces of $[SiH_xX_y]^+$ (X = F, Cl, Br, x + y = 3) (Figs. 1, 2 and 4, Table 1)

Silyl radicals are pyramidal, and direct ionization leads to planar trivalent silyl cations. B3LYP also locates the ion complexes SiX^+-H_2 , SiH^+-XH , and SiX^+-XH as previous MP2 and CCSD(T) do [22]. These ion complexes are energetically less stable than the normal trivalent structures, in contrast to the germyl cations [23]. The relative energies of SiH^+-H_2 to SiH_3^+ , SiF^+-H_2 and SiH^+-FH to SiH_2F^+ , and SiF^+-FH to SiH_2^+ were 96.7, 38.9 and 159.0, and 70.7 kJ/mol at CCSD(T,Full)/AVTZ level, being in accordance with 113.8, 28.8 and 159.5, and 71.4 kJ/mol at G3(CC) level.

The G3(CC) adiabatic IE_as for halogenated silyl radicals are listed in Table 1. Experimental measurements were available only to SiH₃, SiF₃, SiHCl₂ and SiCl₃ [31,40,44,77], and theoretical studies were limited to fluorosilyls and SiCl₃ [29,51,54]. Present G3(CC) represents the first systematic study on this system. G3(CC) calculations show strong effects from F-substitution with increased IE_a from SiH₂F (8.12 eV) to SiF₃ (9.17 eV), very small effect from Cl-

Table 1
ZPE, G3(CC)/B2df+ (in Hartree), the adiabatic ionization energies, and literature values (in eV)

Neutral	Cations	ZPE	G3(CC)	IE	Literature (experimental)	Literature (theoretical)
Si	Si ⁺	0.00000	-288.92405	8.12	8.15 ^a	
SiH	SiH ⁺	0.00477	-289.55091	7.94	7.91 ± 0.01^{b} , 7.89 ± 0.01^{c}	7.90 ^d
SiF	SiF ⁺	0.00223	-388.86223	7.41	$7.54\pm0.16^{e},7.08\pm0.10^{f},7.31\pm0.02^{\:g}$	7.21 ^d , 7.36 ^h
SiCl	SiCl ⁺	0.00146	-749.10824	7.34	6.82^{g} , 7.44 ± 0.40^{i} , 6.79 ± 0.24^{j} , 7.368^{k} , 7.33 ^l	7.30 ^m
SiBr	SiBr ⁺	0.00116	-2862.61218	7.33	6.69^{k} , 9.0 ± 1.0^{n} , 7.3^{o}	
SiH ₂	SiH ₂ ⁺	0.01179	-290.13205	9.09	9.05 ± 0.02^{b}	9.06 ^d
	$Si^{+}-H_{2}(^{2}B_{2})$	0.01162	-290.11421	9.57		
	$Si^{+}-H_{2}(^{2}B_{1})$	0.01167	-290.11087	9.66		
	TS to Si ⁺ -H ₂	0.00655	-290.06715			
SiHF	SiHF ⁺	0.00800	-389.40478	9.47		9.48 ^d
	Si ⁺ -FH	0.01030	-389.37018	10.47		
	TS to Si ⁺ -FH	0.00489	-389.32625			
SiF ₂	SiF ₂ +	0.00506	-488.66626	10.91	$10.75\pm 0.05^{p}\text{, }10.84\pm 0.13^{f}$	10.77 ^d , 10.74 ^h , 10.81 ^q
SiHCl	SiHCl ⁺	0.00742	-749.65904	9.16		
	Si ⁺ -ClH	0.00796	-749.62907	9.99		
	TS to Si ⁺ -ClH	0.00448	-749.60465			
SiCl ₂	$SiCl_2^+$	0.00312	-1209.17801	9.64	$9.81\pm0.10^{j},10.93\pm0.10^{r},10.35^{s}$	9.74 ^t
SiHBr	SiHBr ⁺	0.00709	-2863.16570	9.05		
	Si ⁺ -BrH	0.00717	-2863.13601	9.86		
	TS to Si ⁺ -BrH	0.00447	-2863.11734			
SiBr ₂	SiBr ₂ +	0.00234	-5436.19239	9.33	$8.5 \pm 1.5^{u}, 12 \pm 1^{n}$	
SiH₃	SiH ₃ ⁺	0.02169	-290.78785	8.15	$8.01 \pm 0.02^{b}, 8.135^{v}, 8.14^{w}$	8.19 ^d
	SiH ⁺ -H ₂	0.02006	-290.74290	9.33		
	TS to SiH ⁺ -H ₂	0.01649	-290.68694			
SiH ₂ F	SiH ₂ F ⁺	0.01790	-390.05924	8.12		8.05 ^d
	SiF ⁺ -H ₂	0.01445	-390.04482	8.42		
	SiH+-FH-cis	0.01749	-389.99828	9.77		
	SiH ⁺ -FH-trans	0.01773	-389.99837	9.78		
	TS to SiH ⁺ -FH	0.01320	-389.93513			
	TS to SiF ⁺ $-H_2$	0.01341	-389.90793			
SiHF ₂	SiHF ₂ ⁺	0.01363	-489.32961	8.43		8.33 ^d
	SiF ⁺ -FH-cis	0.01330	-489.30304	9.14		
	SiF ⁺ –FH–trans	0.01321	-489.30198	9.17		
	TS to SiF ⁺ -FH	0.00918	-489.21594			
SiF ₃	SiF ₃ ⁺	0.00922	-588.58528	9.17	$9.99\pm0.24^{e},9.03\pm0.05^{f}$	9.09 ^d , 8.98 ^h
SiH ₂ Cl	SiH ₂ Cl ⁺	0.01690	-750.30986	7.90	7.66 ± 0.23^{x}	
	SiH ⁺ -ClH-cis	0.01524	-750.25599	8.36		
	SiH ⁺ -ClH-trans	0.01570	-750.25782	9.28		
	SiCl ⁺ -H ₂	0.01314	-750.28908	9.32		
	TS to SiH' –CIH	0.01205	-750.20030			
	15 to SICI -H ₂	0.01254	-/50.1//18			
SiHCl ₂	SiHCl ₂ ⁺	0.01152	-1209.82907	7.81	$7.90\pm0.10^{\rm y}$	
	SiCl ⁺ -ClH-cis	0.00987	-1209.79365	8.72		
	SICI' – CIH – trans	0.01002	- 1209./9462	8.70		
SiCl ₂	SiCl ₂ ⁺	0.00566	-1669.34297	7.85	7.65 ± 0.15^{j} , 8.05 ± 0.10^{y}	7.84 ^t
CILL D.	CIL D.+	0.016.42	2002 01444	7.00	//////////////////////////////////////	101
SIH2BI	SIH2BI SiH+ PrU cic	0.01643	-2803.81444	/.83		
	SiH ⁺ _BrH_trans	0.01440	-2803.70242	0.52		
	SiBr ⁺ -H ₂	0.01470	-2863 79269	9.15		
	TS to SiH $^+$ -BrH	0.01134	-2863.71245	0111		
	TS to SiBr ⁺ -H ₂	0.01206	-2863.68891			
SiHBr ₂	SiHBr ₂ ⁺	0.01057	-5436.83752	7.67		
2	SiBr ⁺ –BrH– <i>cis</i>	0.00899	-5436.80111	8.62		
	SiBr ⁺ -BrH-trans	0.00918	-5436.80242	8.59		
	TS to SiBr ⁺ -BrH	0.00615	-5436.74029			
SiBr ₃	SiBr ₃ ⁺	0.00420	-8009.85658	7.63		

Values are obtained from: ^aJANAF table [94]; ^bphotoionization [31]; ^cIon chemistry [38]; ^dBAC-MP4/6-31G(d,p) [29]; ^eIon chemistry [40]; ^fIon chemistry [41]; ^gRydberg series [32]; ^hCCSD(T)/CBS [54]; ⁱIon chemistry [43]; ^jIon chemistry [44]; ^kRydberg series [33]; ⁱPhotoionization mass spectrometry [35]; ^mCCSD(T)/AVQZ calculation [51]; ⁿElectron impact ionization [76]; ^oRydberg series [37]; ^pPhotoelectron spectroscopy [72]; ^qCCSD(T)/CBS [60]; ^rElectron impact ionization [73]; ^sPhotoelectron spectroscopy [74]; ⁱC2(MP2) calculation [51]; ^uEstimation from photoionization [75]; ^vRydberg series [36]; ^wPhotoelectron spectroscopy [78]; ^xIon-molecule reaction [45,46]; ^yEstimation from photoelectron spectroscopy [77].

Fig. 1. Geometries of halogenated silyl, silylene, and silylidyne radicals and their most stable cations at B3LYP/6-31+G(2df,p) level (bond lengths in Å and angles in degree) and NBO charges (in parentheses, at CCSD(T)/6-31G(d) level).

substitution with small change of IE_a from SiH₂Cl (7.90 eV) to SiCl₃ (7.85 eV), and from Br-substitution with slightly decreased IE_a from SiH₂Br (7.83 eV) to SiBr₃ (7.63 eV).

Berkowitz et al. obtained $IE_a(SiH_3) = 8.01 \pm 0.02 \text{ eV}$ from photoionization mass spectrometry study of SiH₃ radical [31]. The value is significantly lower than our G3(CC) prediction of 8.15 eV. On the other hand, their measured appearance energy of $\leq 12.086 \text{ eV}$ for SiH₃⁺ from SiH₄ is in excellent agreement with our G3(CC) one of 12.065 eV. The G3(CC) IE_a also agrees with the values of 8.135 eV obtained by fitting the Rydberg series [36] and of 8.14 \pm 0.01 eV from VUV photoelectron spectroscopy study [78]. The

IE_a by Berkowitz et al. [31] is suspected to be too low, and consequently $\Delta_{f}H^{\circ}$ (SiH₃) is over-estimated from their $\Delta_{f}H^{\circ}$ (SiH₃⁺) and IE_a(SiH₃).

Weber and Armentrout reported $IE_a(SiF_3) = 9.99 \pm 0.24 \text{ eV}$ from $\Delta(\Delta_f H^\circ)$ of SiF₃⁺ and SiF₃ [40]. Later, Fisher et al. [41] disregarded this result because an erroneous $\Delta_f H^\circ$ (SiF₃) was used there, and reported another $IE_a = 9.03 \pm 0.05 \text{ eV}$ from the measured thresholds for SiF₃⁺ + M \rightarrow M⁺ + SiF₃ (M = Xe, NO). The latter is supported by the CCSD(T)/CBS prediction of 8.98 eV [54] and MP4/6-31G(d,p) of 9.09 eV [29], while being lower than G3(CC) of 9.17 eV. The IE_a for fluorosilyl radicals from MP4/6-31G(d,p) predictions are found to

Fig. 2. Geometries of complex ions and transition states for cations of halogenated silylene and silyl radicals at B3LYP/6-31+G(2df,p) level (bond lengths in Å and angles in degree) and NBO charges (in parentheses, at CCSD(T)/6-31G(d) level).

be systematically lower than the G3(CC) ones, e.g., 8.05 and 8.33 eV vs 8.12 and 8.43 eV for SiH₂F and SiHF₂, respectively.

Fisher and Armentrout [44] reported an $IE_a(SiCl_3)$ = 7.65 ± 0.15 eV from the measured $\Delta(\Delta_f H^\circ)$ of SiCl₃ and SiCl₃⁺.

Dyke et al. [77] also reported a value of $8.05\pm0.10\,\text{eV}$ from $\text{IE}_{\text{Expt}}-\Delta(\text{IE}_{\text{MP2}})$, where IE_{Expt} was the experimental vertical IE from photoelectron spectroscopy and $\Delta(\text{IE}_{\text{MP2}})$ was difference between vertical and adiabatic IE_a at MP2/6-31G(d,p) level.

Fig. 3. Potential energy surfaces of [SiHX]⁺ cations (X = H, F, Cl, Br; relative energies in parentheses are in kJ/mol).

The correction $\Delta(IE_{MP2})$ was rather rough and unlikely valid. Both $IE_a(SiCl_3)$ differ significantly from our G3(CC) prediction of 7.85 eV and previous G2(MP2) of 7.84 eV [51]. Neither the $IE_a(SiHCl_2) = 7.90 \pm 0.10$ eV by Dyke et al. [77] is reliable, even though it agrees accidentally with our G3(CC) of 7.81 eV. Murthy and Beauchamp [45,46] reported an $IE_a(SiH_2Cl) = 7.66 \pm 0.23$ eV using $\Delta_f H^\circ$ (SiH_2Cl⁺) obtained from ion–molecule reaction kinetics and $\Delta_f H^\circ$ (SiH_2Cl) from BAC-MP4 prediction [48], being lower than G3(CC) value of 7.90 eV.

The potential energy surfaces of silyl cations are displayed in Fig. 4. For decompositions of SiH_2X^+ and $SiHX_2^+$, the channels with the lowest endothermicity are $SiH^+ + HX$ and $SiX_2^+ + HX$, respectively, while the breakages of $SiHX^+ - H$ and $SiX_2^+ - H$ bonds are much more endothermic. Transition states between trivalent and complex structures are identified here. The ion complexes are unlikely formed from direct ionization of silyl radicals, while $SiH^+ - XH$ and $SiX^+ - XH$ might be formed from reactions of SiH^+ and SiX^+ with HX molecule. For SiH_2X^+ , the barriers to $SiX^+ - H_2$ are higher than those to $SiH^+ - XH$; therefore $SiH^+ + HX$ will be the dominant decomposition channels under low photon or collision energies, even though they are more endothermic than $SiX^+ + H_2$. Note that in post-HF calculations for theses transition barriers, UHF-wavefunction is required for silyl cations because of the RHF-instability. Thereafter, the barrier heights may be over-predicted.

3.4. Ionization energies of SiH_xX_y and potential energy surfaces of $[SiH_xX_y]^+$ (X = F, Cl, Br, x + y = 4) (Figs. 5–9, Table 2)

Similar to cations of halogenated germane, large structural distortions to their neutrals are expected for cations of halogenated silanes. Experimental adiabatic IE_as were only available for SiH₄ [31] and SiF₄ [42], while values for other species listed on NIST website [66] were exclusively obtained from electron impact ionization and photoelectron spectroscopy, which measure vertical IEs. Theoretical predictions are available to fluorinated and chlorinated silanes [29,51,54,55], especially the IE_a values for fluoroand chlorosilanes obtained from previous G3 study [55] differ from current G3(CC) ones only slightly, within 0.03 eV except for SiH₂Cl₂, for which G3(CC) value is 0.08 eV lower.

From photoionization mass spectrometry, Berkowitz et al. [31] obtained IE_a(SiH₄) = 11.00 \pm 0.02 eV, with which our G3(CC) value of 11.04 eV agrees excellently. Structure of SiH₄⁺ has symmetry of Cs point group at B3LYP level and can be viewed as SiH₂⁺–H₂ complex (Fig. 5). Similar large structural distortion to the neutral has also been found in [GeH₄]⁺ and [SnH₄]⁺ [20,23]. The structural changes are due to spin–orbit coupling and/or the Jahn–Teller effect [79].

HOMOs of SiF₄, SiCl₄, and SiBr₄ have triple degeneracy. In cations, the spin-orbit interaction and/or Jahn-Teller effect cause a change in molecular shape and the degeneracy is lifted, and the symmetries are reduced to C_{2V} (Fig. 5). The two halogen atoms with less negatively charge experience less repulsion to each other, leading to small XSiX angle of 76.4°, 81.4°, and 81.8°, while the other two atoms open to large XSiX angles of 119.6°, 117.5°, and 117.3° in SiF $_4^+$, SiCl₄⁺, and SiBr₄⁺, respectively. The large structural change leads to difficulty in determining the adiabatic IE in photoionization study because of the small Franck-Condon factors at the ionization onsets. As noticed in previous studies [51,54], the C_S structures of SiF₃⁺-F and $SiCl_3^+$ -Cl for SiF_4^+ and $SiCl_4^+$ found at HF and MP2 level converge to C_{2V} structures at B3LYP/6-31+G(2df,p) level. Attempt for a C_S structure for SiBr₄⁺ at B3LYP level also leads to C_{2V} structure. For SiF₄⁺ at MP2 level, the C_S structure is ca. 4.6 kJ/mol lower in energy than the C_{2V} one at CCSD(T)/CBS level [54].

Several photoelectron spectroscopy studies have reported closely agreed vertical IE around 16.46 eV for SiF₄ [80–83], which is supported by current G3(CC) prediction of 16.54 eV. On the other hand, the reported IE_a(SiF₄) were rather diverse. Kickel et al. [42] found that early studies obtained IE_a(SiF₄) in the range of 15.19–16.1 eV [66], and suggested another IE_a(SiF₄) = 15.29 ± 0.08 eV from the measured threshold for charge transfer reaction O⁺/N⁺ + SiF₄ \rightarrow O/N + SiF₄⁺. This value is consid-

Fig. 4. Potential energy surfaces of [SiH₂X]⁺ and [SiHX₂]⁺ cations (X = H, F, Cl, Br; relative energies in parentheses are in k]/mol).

ered to be the best so far, and has received support from theoretical predictions of 15.34 eV at MP4/6-31G(d,p) level [29] and of 15.34 eV at CCSD(T)/AVTZ + MP2/CBS level (converted from their enthalpies of formation at 298 K using current B3LYP thermal corrections) [54]. However, Chien et al. [55] pointed out that the agreement at

MP4/6-31G(d,p) level might be fortuitous because MP4 calculations with larger basis set yield much different values. For SiCl₄, IE_a of 11.79 \pm 0.01 eV [81] from photoelectron spectrum and 11.7 \pm 0.3 eV [84] from electron impact ionization have been reported, and for SiBr₄, 10.62 \pm 0.04 eV [75] from photoionization mass spectromet-

Fig. 5. Geometries of [SiX₄]^{0,+1} (X = H, F, Cl, Br) at B3LYP/6-31+G(2df,p) level (bond lengths in Å and angles in degree) and NBO charges (in parentheses, at CCSD(T)/6-31G(d) level).

Fable 2
ZPE, G3(CC)/B2df+ (in Hartree), the adiabatic ionization energies, and literature values (in eV)

	Cations		ZPE	G3(CC)	IE ^a	Literature (experimental)	Literature (theoretical)
SiH ₄	SiH ₂ ⁺ -H ₂	Cs	0.02819	-291.33278	11.04	11.00 ± 0.02^{b}	11.17 ^c , 11.05 ^d
SiH₃F	$\begin{array}{l} SiH_3F^+\\ SiHF^+-H_2\\ SiH_2^+-FH\\ TS to SiHF^+-H_2\\ TS to SiHF^+-H_2\\ TS to SiH_2^+-FH \end{array}$	C _S C ₁ C ₁ C ₁ C ₅	0.02199 0.02301 0.02573 0.02153 0.02162	-390.57709 -390.59646 -390.58864 -390.56966 -390.53900	11.81 11.31 11.59	$\begin{array}{c} 12.58^{e}, 12.6\pm0.1^{f} \\ 11.92^{f} \end{array}$	12.04 ^c 11.48 ^c 12.49, ^c 11.59 ^d
SiH ₂ F ₂	$\begin{array}{l} SiH_2F_2^+\\ SiF_2^H_2\\ SiHF^+-FH\\ TS to SiF_2^+-H_2\\ TS to SiHF^+-FH \end{array}$	C_{2V} C_S C_1 C_S C_1	0.01676 0.01865 0.02102 0.01581 0.01716	-489.84469 -489.86061 -489.85943 -489.82277 -489.80684	12.27 11.89 11.99	12.85 ^e	12.9±0.1 ^f , 12.45 ^c 12.15 ^c 11.87 ^c , 11.98 ^d
SiHF ₃	SiHF3 ⁺ SiF2 ⁺ -FH TS to SiF2 ⁺ -FH	C _{3V} C ₁ C _S	0.01231 0.01682 0.01260	-589.10679 -589.12697 -589.07026	13.03 12.61	14.48 ± 0.02^g	13.24 ^c 12.45 ^c , 12.58 ^d
SiF ₄	SiF4 ⁺	C _{2V}	0.01083	-688.29559	15.74	$16.46^h,15.29\pm0.08^i$	15.34 ^j , 15.34 ^c , 15.65 ^d
SiH₃Cl	$\begin{array}{l} SiH_3Cl^+\\ SiHCl^+-H_2\\ SiH_2^+-ClH\\ TS to SiHCl^+-H_2\\ TS to SiH2^+-ClH\\ \end{array}$	C _s C ₁ C ₁ C ₁ C ₅	0.02233 0.02200 0.02351 0.02071 0.02075	-750.83187 -750.84651 -750.84738 -750.82365 -750.81578	11.40 10.99 11.01	11.61°, 11.65 ^f , 11.51 ^k	11.03 ^d
SiH ₂ Cl ₂	$\begin{array}{l} SiH_2Cl_2^+\\ SiCl_2^+-H_2\\ SiHCl^+-ClH\\ TS to SiCl_2^+-H_2\\ TS to SiHCl^+-ClH\\ \end{array}$	Cs Cs C1 Cs C1	0.01549 0.01565 0.01766 0.01467 0.01528	- 1210.34165 - 1210.36111 - 1210.36039 - 1210.32973 - 1210.32831	11.53 11.01 11.08	11.70°, 11.64 $\pm0.02^{f}$	11.09 ^d
SiHCl₃	SiHCl ₃ + SiHCl ₃ + SiCl ₂ +-ClH TS to SiCl ₂ +-ClH	C _{3V} C _S C ₁ C _S	0.00904 0.01311 0.01205 0.00933	1669.85534 1669.86366 1669.87450 1669.84018	11.60 11.48 11.16	11.94° 11.15 ^d	11.15 ^d
SiCl ₄	SiCl ₄ +	C _{2V}	0.00666	-2129.37566	11.55	$11.79\pm0.01^{1},11.7\pm0.3^{m}$	11.66 ^d
SiH₃Br	SiH3Br ⁺ SiHBr ⁺ -H2 SiH2 ⁺ -BrH TS to SiHBr ⁺ -H2 TS to SiH2 ⁺ -BrH	C _s C ₁ C ₁ C ₁ C _s	0.02318 0.02143 0.02262 0.02022 0.02010	-2864.35609 -2864.35178 -2864.35391 -2864.32969 -2864.32772	10.80 10.87 10.84	$\begin{array}{c} 10.90^{e}, 10.96\pm 0.02^{f} \\ 11.03\pm 0.05^{n} \end{array}$	
SiH ₂ Br ₂	$\begin{array}{l} SiH_2Br_2^+\\ SiH_2Br_2^+\\ SiBr_2^+-H_2\\ SiHBr^+-BrH\\ TS to SiBr_2^+-H_2\\ TS to SiHBr^+-BrH \end{array}$	$\begin{array}{c} C_{2V} \\ C_S \\ C_S \\ C_1 \\ C_S \\ C_1 \end{array}$	0.01855 0.01561 0.01418 0.01674 0.01381 0.01403	-5437.38304 -5437.36159 -5437.37355 -5437.37056 -5437.34138 -5437.34446	10.53 11.04 10.67 10.82	$10.92 \pm 0.02^{\rm f}$	
SiHBr ₃	SiHBr3 ⁺ SiBr2 ⁺ -BrH TS to SiBr2 ⁺ -BrH	C _S C ₁ C _S	0.00841 0.01053 0.00757	-8010.37417 -8010.38987 -8010.36146	11.11 10.74		
SiBr ₄	SiBr4 ⁺	C _{2V}	0.00481	-10583.41381	10.52	$10.62\pm0.04^{\rm o}$	

^aIEs are calculated from G3(CC) electronic energy differences between cations and neutrals with ZPE corrections. Values in *italics* are for cations with structures closest to their neutrals, and values in **bold** are the adiabatic IE to the ground cation; ^bFrom photoionization study [31]; ^cAdiabatic IE from isogyric reactions at MP4/6-31G(d,p) level [29]; ^dAdiabatic IE from G3 calculation [55]; ^eVertical IEs from photoelectron spectroscopy [86]; ^fVertical IEs from photoelectron spectroscopy [86]; ^fVertical IEs from photoelectron spectroscopy [86]; ^sVertical IE from CCSD(T)/AVTZ + MP2/CBS [54]; ^kVertical IE from photoelectron spectroscopy [81]; ^mFrom electron impact ionization [84]; ^sFrom photoelectron spectroscopy [87]; ^sFrom photoelectron s

ric study. These values are slightly higher than our G3(CC) adiabatic IE_as of 11.55 and 10.52 eV for SiCl₄ and SiBr₄, respectively. The G3(CC) IE_a(SiCl₄) is slightly lower than previous G3 value of 11.66 eV [55] and G2(MP2) of 10.67 eV (with Cs symmetry for SiCl₄⁺) [51].

At B3LYP/6-31+G(2df,p) level, both classical and non-classical structures are identified for cations of SiH₃X, SiH₂X₂, and SiHX₃ (Figs. 6–8). The non-classical structures can be viewed as ion complexes between silylene cations and H₂ or HX with a small fraction of positive charge partitioned to H₂ or HX moieties. Previous studies have found this type of structure for cations of fluorinated and chlorinated silanes [29,85] and germanes [23]. The non-classical structures are lower in energy than the classical ones except for

 $[SiH_3Br]^+$ and $[SiH_2Br_2]^+$. It is again difficult to measure the adiabatic IE_as to the non-classical cations. The measured "adiabatic" or vertical IEs from photoelectron spectroscopy correspond most likely to the classical cationic structure instead.

Symmetries of cations of SiH₃X (X = F, Cl, Br) are reduced due to the spin-orbit interaction and Jahn-Teller effect (Fig. 6). Ion complexes SiHF⁺-H₂, SiH₂⁺-FH, SiHCl⁺-H₂, and SiH₂⁺-ClH are lower in energy than their classical ones, while the three [SiH₃Br]⁺ structures are within 7 kJ/mol. Photoelectron spectroscopic studies have obtained vertical IEs of 11.61–11.65 eV and 10.96–11.03 eV for SiH₃Cl and SiH₃Br [86–89]. These vertical IEs are close to the predicted vertical IEs of 11.73 and 11.02 eV and slightly higher than the predicted

Fig. 6. Geometries of $[SiH_3X]^{0,+1}$ (X = F, Cl, Br) at B3LYP/6-31+G(2df,p) level (bond lengths in Å and angles in degree) and NBO charges (in parentheses, at CCSD(T)/6-31G(d) level).

Fig. 7. Geometries of $[SiH_2X_2]^{0,+1}$ (X = F, Cl, Br) at B3LYP/6-31+G(2df,p) level (bond lengths in Å and angles in degree) and NBO charges (in parentheses, at CCSD(T)/6-31G(d) level).

Fig. 8. Geometries of [SiHX₃]^{0,+1} (X = F, Cl, Br) at B3LYP/6-31+G(2df,p) level (bond lengths in Å and angles in degree) and NBO charges (in parentheses, at CCSD(T)/6-31G(d) level).

adiabatic IE_as of 11.40 and 10.80 eV to classical SiH₃Cl⁺ and SiH₃Br⁺, respectively, at G3(CC) level. For SiH₃Cl, the "true" IE_a is 10.99 eV to SiHCl⁺-H₂ or 11.01 eV to SiH₂⁺-ClH; while for SiH₃F, the G3(CC) IE_a of 11.81 eV to SiH₃F⁺ is much lower than the vertical IE of ~12.6 eV by photoelectron spectroscopy [86,88].

Three structures are located for $[SiH_2X_2]^+$ cations as SiX_2^+ –H₂, SiHX⁺–XH, and tetravalent $SiH_2X_2^+$ (Fig. 7). The ion complexes are structurally similar across the halogen substitutions, while the structural difference for $SiH_2X_2^+$ is interesting. $SiH_2F_2^+$ has C_{2V} symmetry with opened FSiF angle to 118.2°, closed HSiH angle to 79.3°, lengthened Si–H bond from 1.472 to 1.582 Å, and shortened Si–F bond from 1.600 to 1.545 Å. $SiH_2Br_2^+$ - C_{2V} has similar structure with, however, closed BrSiBr angle to 83.0°, opened HSiH angle to 120.8°, shortened Si–H bonds, and lengthened Si–Br bonds.

In between, SiH₂Cl₂⁺-C_{2V} structure is a first-order saddle point, and B3LYP instead locates a SiH₂Cl₂⁺-C_S structure which is structurally close to neutral SiH₂Cl₂ and energetically *ca*. 7 kJ/mol below SiH₂Cl₂⁺-C_{2V}. B3LYP also locates a similar SiH₂Br₂⁺-C_S structure being *ca*. 48 kJ/mol above SiH₂Br₂⁺-C_{2V}. The vertical IEs of ~12.9, ~11.7, and 10.92 eV have been reported for SiH₂F₂, SiH₂Cl₂, and SiH₂Br₂⁺[86,88], respectively, using photoelectron spectroscopy technique. The values are close to the predicted vertical IEs of 13.06, 11.71, and 11.10 eV and slightly higher than the predicted adiabatic IE_as of 12.27, 11.53, and 11.04 eV to SiH₂F₂⁺-C_{2V}, SiH₂Cl₂⁺-C_S and SiH₂Br₂⁺-C_S, respectively, at G3(CC) level.

HOMOs of SiHX₃ (X=F, Cl, Br) are non-degenerate. The C_{3V} symmetry may possibly be retained in their cations (Fig. 8). At B3LYP/6-31+G(2df,p) level, SiHF₃⁺ and SiHCl₃⁺ with C_{3V} symme-

try are indeed local minima, while SiHBr₃⁺ with C_{3V} symmetry has two imaginary vibrational frequencies and the symmetry needs to be lowered to C_S for a stationary point. For SiHCl₃⁺, lowering the symmetry to C_S leads to more stable structure in which one HSiClangle is open to 117.9° and the other two Cl-atoms are brought close to ClSiCl angle of 81.0°. From SiHF₃ to SiHF₃⁺-C_{3V}, the Si-H bond length stretches from 1.458 to 1.877 Å, Si-F shrinks from 1.585 to 1.539 Å, and SiF₃⁺ moiety is close to planar (FSiF = 118.9°). Changes are relatively less from SiHCl₃ to SiHCl₃⁺-C_{3V} and from SiHBr₃ to SiHBr₃⁺-C_{3V} or SiHBr₃⁺-C₅, e.g., Si–H from 1.467 to 1.598 Å, S-Cl from 2.050 to 2.006 Å, and ClSiCl = 117.6°. Photoelectron spectroscopy studies have obtained vertical IEs of 14.48 ± 0.02 and 11.94 eV for SiHF₃ [90] and SiHCl₃ [86], respectively. The values are supported by G3(CC) predictions of 14.60 and 12.00 eV. The vertical IE(SiHF₃) is significantly larger than IE_a(SiHF₃) of 13.03 eV (to SiHF₃⁺-C_{3V}) because of the large structural changes fro SiHF₃ to SiHF₃⁺-C_{3V}, while the vertical IE(SiHCl₃) is only slightly higher than IE_a(SiHCl₃) of 11.60 eV to SiHCl₃⁺-C_{3V} or 11.48 eV to SiHCl₃⁺-C₅ with less structural changes. For cations of SiHX₃, SiX₂⁺-XH structures are always energetically more stable than the classical ones; however, it is difficult to observe them in photoionization study.

We have also located the transition states between the classical and ion-complex structures for halogenated silane cations, and evaluated their relative energetics at G3(CC) level (Fig. 9). While the appearance energies for silyl cations from dissociative photoionization of silanes are likely equal to their endothermicities, the appearances of silylene cations + H₂/HX are complicated because of the transition barriers between classical and non-classical structures. If the photoionization prompts silanes to their classical cations, the appearance energies for SiHX⁺ + H₂ and SiX₂⁺ + H₂ (X = F, Cl, Br) from SiH₃X and SiH₂X₂, SiH₂⁺ + HF from SiH₃F, SiHF⁺ + HF from SiH₂F₂, and SiF₂⁺ + HF from SiH₃⁺ and SiH₃X, SiHX⁺ + HX from SiH₂X₂, and SiX₂⁺ + HX from SiH₃X (X = Cl,

Br) are equal to their endothermicities because the transition barriers are energetically below these exit channels.

3.5. Proton affinities of silanes (Table 3, Fig. 10)

Proton affinity is one of the important parameters in gas-phase ion-chemistry [24]. The experimental measurements on PAs are available for SiH₄ and SiF₄ only [91,92], and theoretical G3 study on PAs of fluorinated and chlorinated silanes [55]. Fig. 10 shows the structures of protonated silanes, which can be viewed as the complex ions between silvl cations and H_2 or XH (X = F, Cl, Br). For SiH₃X, SiH₂X₂, and SiHX₃, protonations at X-atom are relatively more stable except for SiH₃F and SiH₂F₂. The PAs for SiH₃F and SiH₂F₂ given by Chien et al. [55] corresponds to protonations at Fatom. For others, our G3(CC) agrees with G3 within 3 kJ/mol while being systematically higher. For PAs at 298 K, it is necessary to treat one of the low-frequency vibrational modes as hindered or free rotor. The mode corresponds to the torsion mode in complexes with H₂ or the internal rotation around Si-X bond in complexes with HX. Following the suggestion by Nicolaides et al. [93], we have assigned thermal contribution of RT/2 at 298 K to the torsion or internal rotation modes with frequency less than $260 \,\mathrm{cm}^{-1}$.

Table 3 lists the calculated PAs and dissociation energies $D_0(\text{Silyl}^+-\text{H}_2/\text{HX})$. For silyl $^+-\text{H}_2$, the bonding between silyl $^+$ and H_2 is weak, where the silyl $^+$ moiety is almost planar (summation of three bond angles in the range of 355–399.8°) and the H₂ moiety carries only a small fraction of positive charge. For silyl $^+$ -XH, the bond strengths are from 80 to 173 kJ/mol at G3(CC) level, being relatively stronger, and the silyl cations are less planar (summations of the angles in the range of 350–355°).

The calculated G3(CC) PA(SiH₄) = 634.0 kJ/mol falls in the range of 628-653 kJ/mol by Cheng and Tampe from Tandem mass spectroscopy study [91], and agrees with the value of 639.7 kJ/mol listed by Hunter and Lias [94]. For SiF₄, Ling et al. [92] recently obtained PA

Fig. 9. Potential energy surfaces of [SiH₃X]⁺, [SiH₂X₂]⁺, and [SiHX₃]⁺ cations (X = F, Cl, Br; relative energies in parentheses are in kJ/mol).

Fig. 10. Geometries of protonated silanes at B3LYP/6-31+G(2df,p) level (bond lengths in Å and angles in degree) and NBO charges (in parentheses, at CCSD(T)/6-31G(d) level), the values to the closed circles are the summations of three angles in silyl cations.

of 492.5 \pm 5.0 kJ/mol (297 K) from proton transfer kinetics study to SiF₄ and of 496.6 kJ/mol from MP4 and QCISD(T) calculations with 6-311++G(3df,3pd) basis set, being higher than G3(CC) prediction of 473.5 kJ/mol.

3.6. Benchmark calculations for adiabatic IE_as of fluorinated species and PA of SiF₄

G3(CC) IE_a and PA of SiF₄ are significantly different from the previous experimental and theoretical studies. Benchmark calculations are carried out here for these two quantities at (U)CCSD(T,FC) level with cc-pVnZ basis sets (n = 3, 4, 5), while the core-valence correlation is considered with cc-pCVQZ basis set (only 1s orbitals of Si and F are frozen) [95]. The predicted IE_a are 15.38, 15.57, 15.62, and 15.59 eV, and PA_{298K} are 497.3, 485.9, 482.6, and 483.5 kJ/mol with basis sets cc-pVnZ (n = 3, 4, 5) and cc-pCVQZ, respectively. At CCSD(T)/VTZ level, the IE_a agrees with the ion-chemistry result of $15.29 \pm 0.08 \text{ eV}$ [42] and the CCSD(T)/AVTZ + MP2/CBS prediction of 15.34 eV [54], and PA agrees with the recent experimental protontransfer and theoretical QCISD(T)/6-311++G(3df,3pd) studies of 492.5 ± 5.0 and 496.6 kJ/mol [92]. However, after basis set extrapolation and correction for core-valence correlation, the (U)CCSD(T) IE_a and PA of 15.67 eV and 478.9 kJ/mol support current G3(CC) results of 15.74 eV and 473.5 kJ/mol instead. Benchmark calculations also obtain adiabatic IE_as of 7.36, 10.75, 9.06, 9.49, 8.05, and

8.34 eV for SiF, SiF₂, SiF₃, SiHF, SiH₂F, and SiHF₂, respectively, comparing to G3(CC) values of 7.41, 10.91, 9.17, 9.47, 8.12, and 8.43 eV. The values for SiF and SiF₂ agree with previous RCCSD(T)/CBS values [54] of 7.36 and 10.74 eV, while values for SiF₃ is higher than RCCSD(T)/CBS of 8.98 eV, being in line with the case for IE_a(SiF₄). The (U)CCSD(T)/CBS supports current G3(CC) calculations except for SiF₂, where G3(CC) IE_a is higher by *ca*. 0.16 eV. Surprisingly, the benchmark calculations support the previous BAC-MP4/6-31G(d,p) predictions of 7.21, 10.77, 9.09, 9.48, 8.05, and 8.33 eV [29], except for SiF and SiF₄, where the deviations were 0.15 and 0.40 eV, respectively.

3.7. Enthalpies of formation of halogenated silanes and cations (Tables 4 and 5)

The enthalpies of formation of silanes and the most stable silane cations are readily obtained from the G3(CC) atomization energies and the adiabatic IE_as. Evaluations by Walsh [27] and JANAF-1985 [26] have recommended $\Delta_{\rm f} H^{\circ}_{298\,\rm K} = -1615.0 \pm 0.8$, -662.7 ± 5.4 , and -415.5 ± 8.4 kJ/mol for SiF₄, SiCl₄, and SiBr₄, compared to predictions of -1607.5, -655.0, and -415.8 kJ/mol using G3(CC) atomization energies (Table 4). The small discrepancies on SiF₄ and SiCl₄ are likely due to the deficiency of G3(CC) in describing the F–F or Cl–Cl interactions, therefore corrections of -1.25 and -1.3 kJ/mol are assigned to each F–F and Cl–Cl interaction, respec-

Table 3

ZPE, G3(CC)/B2df+ (in Hartree), the enthalpies of formation derived from atomization energies of protonated silanes, proton affinities at 0 K and 298 K, and D₀(Silyl⁺-H₂/HX) (in kJ/mol)

Germane	Germane-H ⁺	ZPE	G3(CC)	$\Delta_{\mathrm{f}}H^{\circ}$		PA			D_0
				0 K	298 K	0 K	298 K ^a	Lit. (298 K) ^b	
SiH4	SiH ₃ *-H ₂	0.03835	-291.99019	935.0	924.2	632.1	634.0	631.5 639.7 ^c 628–653 ^d	50.2
SiH₃F	SiH ₂ F ⁺ -H ₂ SiH ₃ ⁺ -FH	0.03405 0.03608	-391.25602 -391.24864	572.3 596.9	561.4 586.6	609.8 585.2	613.2 586.8	585.3	36.8 117.4
SiH ₂ F ₂	SiHF ₂ ⁺ -H ₂ SiH ₂ F ⁺ -FH FSiFH— <i>cis</i>	0.02903 0.03138	-490.52647 -490.52165	195.5 214.2	186.5 205.0	571.5 552.7	572.7 554.2	552.1	38.8 123.9
SiHF3	SiF ₃ ⁺ -H ₂ SiHF ₂ ⁺ -FH HSiFH— <i>trans</i>	0.02455 0.02632	-589.79206 -589.79725	-167.1 -176.2	-174.6 -183.6	507.5 516.5	508.7 517.7	515.4	64.8 139. 5
SiF4	SiF ₃ ⁺ -FH FSiFH— <i>cis</i>	0.02143	-689.06519	-546.0	-552.2	472.1	473.5	$470.7502.9 ^{c}492.5 \pm 5.0 ^{e}478.9 ^{f}$	172.8
SiH₃Cl	SiH ₂ Cl ⁺ -H ₂ SiH ₃ ⁺ -ClH HSiClH—trans	0.03261 0.03362	-751.50119 -751.50466	772.8 766.3	762.5 756.0	628.8 635.3	630.7 637.3	634.3	23.6 130. 4
SiH ₂ Cl ₂	SiHCl ₂ ⁺ -H ₂ SiH ₂ Cl ⁺ -ClH ClSiClH—trans	0.02570 0.02757	-1211.01477 -1211.01535	600.7 604.0	593.7 595.8	625.6 622.3	625.9 623.8	622.9	12.6 103.7
SiHCl₃ SiCl₄	SiCl ₃ ⁺ –H ₂ SiHCl ₂ ⁺ –ClH HSiClH– <i>trans</i> SiCl ₃ ⁺ –ClH ClSiClH– <i>trans</i>	0.01924 0.02132 0.01480	1670.52721 1670.52905 2130.04143	432.8 433.3 265.5	428.5 427.5 262.3	615.6 615.0 609.6	615.7 616.7 611.5	614.9 609.1	10.0 91.3 88.8
SiH₃Br	SiH ₂ Br ⁺ -H ₂ SiH ₃ ⁺ -BrH HSiBrH— <i>trans</i>	0.03198 0.03252	-2865.00406 -2865.01019	831.9 817.2	831.9 817.2	634.7 649.3	636.5 651.2		19.5 142.9
SiH ₂ Br ₂	SiHBr2 ⁺ -H2 SiH2Br ⁺ -BrH BrSiBrH— <i>trans</i> SiH2Br ⁺ -BrH BrSiBrH— <i>cis</i>	0.02403 0.02652 0.02629	5438.02076 5438.02287 5438.02234	717.2 718.1 718.9	717.2 718.1 718.9	641.6 640.7 639.9	641.1 643.2 641.9		7.9 107.3 108.1
SiHBr ₃ SiBr ₄	SiBr3 ⁺ -H2 SiHBr2 ⁺ -BrH HSiBrH <i>—trans</i> SiBr3 ⁺ -BrH BrSiBrH <i>—trans</i>	0.01583 0.01970 0.01214	-8011.03761 -8011.03795 -10584.05290	601.4 610.5 501.4	601.4 610.5 501.4	647.6 638.5 640.6	644.4 641.0 642.7		6.6 89.3 81.4

^aThermal correction of RT/2 is assigned to one of the low-frequency modes; Values in bold corresponds to the lowest protonated silanes; ^bFrom G3 prediction by Chien et al. [55], unless otherwise stated; ^cFrom Hunter and Lias [94]; ^dFrom Tandem mass spectrometry study by Cheng and Lampe [91]; ^eMass spectrometry study [92]; ^fCCSD(T)/CBS with core-valence correlation by present study (see text).

tively. The corrections are applied to all other species with F–F or Cl–Cl interactions.

For $\Delta_{f}H^{\circ}_{298\,K}$ (SiH_4), Gunn and Green (GG) first obtained a value of 30.5 ± 1.3 kJ/mol from the heat of decomposition for $SiH_4(g) \rightarrow Si(s) + 2H_2(g)$ and values of 71.5 ± 1.3 and 108.4 kJ/molfor Si₂H₆ and Si₃H₈ [96,97]. These values are supported excellently by our G3(CC) predictions of 29.4, 70.0, and 106.9 kJ/mol, respectively. These calorimetric measurements have high precision. However, CATCH and JANAF argued that Si(s) produced was in amorphous state of in crystalline state, and raised the values by 4.2 kJ/mol per silicon atom, leading to fairly large discrepancies to G3(CC) predictions. The corrected values for SiH₄ and Si_2H_6 were adopted in photoionization study on SiH_x [31] and in a large number of theoretical studies on the thermochemistry of silicon hydrides [98-102] where they were taken as reference for calibrating the theory and setting up the correction parameters. However, Feller and Dixon [59] criticized this correction by CATCH and JANAF from their high-level CCSD(T)/CBS calculation of $\Delta_{f}H_{0K}^{\circ}(SiH_{4}) = 36.4 \pm 2.5 \text{ kJ/mol}$ and $\Delta_{f}H_{0K}^{\circ}(Si_{2}H_{6}) = 82.4 \pm 2.1 \text{ kJ/mol}$ ($\Delta_{f}H_{298K}^{\circ} = 26.8 \text{ and } 64.4 \text{ kJ/mol}$ using current B3LYP thermal corrections), which supports the original GG values. Together with our G3(CC) predictions, the original GG value for SiH₄ is preferred.

Experimentally, $\Delta_f H^\circ$ of other halosilanes have been measured from the equilibrium studies, and the most notable were the systematic hydrogenation studies by Farber and Srivastava [103–105]. The measured enthalpies of reactions are compared with G3(CC) predictions as:

$$\begin{split} & \text{SiF}_4 + \text{H}_2 \rightarrow \text{SiHF}_3 + \text{HF}, \\ & \Delta_r H^\circ_{298\,\text{K}} = 116.3 \pm 8.4\,\text{kJ/mol}\,(\text{Expt}), \ 141.6\,\text{kJ/mol}\,(\text{G3}(\text{CC})) \\ & \text{SiHF}_3 + \text{H}_2 \rightarrow \text{SiH}_2\text{F}_2 + \text{HF} \\ & \Delta_r H^\circ_{298\,\text{K}} = 149.4 \pm 8.4\,\text{kJ/mol}\,(\text{Expt}), \ 154.0\,\text{kJ/mol}(\text{G3}(\text{CC})) \\ & \text{SiH}_2\text{F}_2 + \text{H}_2 \rightarrow \text{SiH}_3\text{F} + \text{HF} \\ & \Delta_r H^\circ_{298\,\text{K}} = 115.5 \pm 8.4\,\text{kJ/mol}\,(\text{Expt}), \ 143.1\,\text{kJ/mol}(\text{G3}(\text{CC})) \\ & \text{SiCl}_4 + \text{H}_2 \rightarrow \text{SiHCl}_3 + \text{HCl} \\ & \Delta_r H^\circ_{298\,\text{K}} = 71.1 \pm 6.3\,\text{kJ/mol}\,(\text{Expt}), \ 81.4\,\text{kJ/mol}(\text{G3}(\text{CC})) \\ & \text{SiHCl}_3 + \text{H}_2 \rightarrow \text{SiH}_2\text{Cl}_2 + \text{HCl} \\ & \Delta_r H^\circ_{298\,\text{K}} = 91.6 \pm 5.0\,\text{kJ/mol}\,(\text{Expt}), \ 86.4\,\text{kJ/mol}(\text{G3}(\text{CC})) \\ & \text{SiH}_2\text{Cl}_2 + \text{H}_2 \rightarrow \text{SiH}_3\text{Cl} + \text{HCl} \\ & \Delta_r H^\circ_{298\,\text{K}} = 87.0 \pm 6.3\,\text{kJ/mol}\,(\text{Expt}), \ 84.6\,\text{kJ/mol}(\text{G3}(\text{CC})) \\ & \text{SiBr}_4 + \text{H}_2 \rightarrow \text{SiHBr}_3 + \text{HBr} \\ & \Delta_r H^\circ_{298\,\text{K}} = 75.9 \pm 2.9\,\text{kJ/mol}\,(\text{Expt}), \ 77.4\,\text{kJ/mol}(\text{G3}(\text{CC})) \end{split}$$

71

	~ ~ ~	,. 1				8 . 8	1	`	51 ,
Species ^a	ZPE	G3(CC)	0 K	298 K	298 K ^b	JANAF ^c	Walsh ^d	Previous (theoretical)	Experimental
Si	0.00000	-289.22263	446.0	450.0		446.0 ± 8			
Br	0.00000	-2573.51914	117.9	111.9		117.9			
HBr	0.00592	-2574.16348	-27.0	-34.9		-36.4			
SiH4	0.03065	-291.74111	39.0	29.4		34.3 ± 2.1		35.3 ^e	30.5 ± 1.3^{1}
Si ₂ H ₆	0.04797	-582.29870	88.0	70.0					71.5 ± 1.3^{1}
Si ₃ H ₈	0.0651	-872.85951	128.2	106.9					108.4 ¹
SiH₃F	0.02678	-391.01578	-346.0	-355.3		-376.6 ± 20.9	-376.6 ± 41.8	–350.9 ^e , –357.7 ^f , –352.7 ^g , –359.0 ^h	-415.9 ^m
SiH ₂ F ₂	0.02235	-490.30137	-761.2	-769.6	-770.9	-790.8 ± 20.9	-790.8 ± 33.6	$-766.6^{\rm e}$, $-779.8^{\rm f}$, $-771.9^{\rm g}$ $-779.5^{\rm h}$	-804.2
SiHF ₃	0.01743	-589.59083	-1187.8	-1194.7	-1198.5	-1200.8 ± 20.9	-1200.8 ± 20.9	-1193.1 ^e , -1207.6 ^f , -1201.2 ^g , -1205.8 ^h	-1225.9
SiF4	0.01224	-688.87534	-1602.1	-1607.5	-1615.0	-1615.0 ± 0.8	-1615.0 ± 0.8	-1607.1 ^e	
SiH₃Cl	0.02575	-751.25413	-126.5	-135.6		-141.8 ± 8	-135.6 ± 10.5	-132.3 ^e , -134.7 ^f , -133.9 ^g	
SiH ₂ Cl ₂	0.02007	-1210.77007	-301.8	-309.2	-310.5	-320.5 ± 12.6	-315.1 ± 8.4	-308.7 ^e , -311.7 ^f , -310.5 ⁱ	
SiHCl₃	0.01377	-1670.28638	-479.7	-484.6	-488.5	-496.2 ± 4.2	-499.2 ± 7.0	-487.2 ^e , -489.5 ^f , -488.7 ⁱ	
SiCl ₄	0.00703	-2129.80051	-653.0	-655.0	-662.8	-662.8 ± 1.3	-662.7 ± 5.4	-660.9 ^e , -662.8 ^f	
SiH₃Br	0.02528	-2864.75492	-61.6	-77.9		-78.2 ± 17	-64.0 ± 8.8		
SiH ₂ Br	0.01909	-5437.77061	-169.3	-191.1		-190.4 ± 17	-180.7 ± 10.5		
SiHBr₃	0.01224	-8010.78642	-279.1	-305.2		-302.9 ± 17	-303.3 ± 9.2		
SiBr ₄	0.00499	-10583.80076	-386.1	-415.8		-415.5 ± 16.7	-415.5 ± 8.4		
SiH ₃	0.02081	-291.08650	200.7	195.2				200.0 ^f , 199.6 ^h ,	195.0 ± 6.7
SiH ₂ F	0.01704	-390.35694	-173.0	-178.3				-176.4 ^f , -187.9 ^h ,	
SiHF ₂	0.01260	-489.63831	-577.1	-581.5	-582.8			-584.0 ^f , -596.6 ^h ,	
SiF ₃	0.00807	-588.92119	-985.4	-988.3	-992.1	-1085.3 ± 16.7	-1000.0 ± 21.0	-993.4 ^f , -1007.1 ^h , -998.7 ^j ,	$\begin{array}{c} -1075 \pm 11^n \\ -997.5 \pm 4.6^n \end{array}$
SiH ₂ Cl	0.01616	-750.59932	36.3	31.2				32.6 ^f , 33.5 ⁱ ,	
SiHCl ₂	0.01072	-1210.11513	-138.1	-141.5	-142.8			-143.5 ^f , -142.3 ⁱ ,	
SiCl ₃	0.00477	-1669.63052	-312.6	-313.4	-317.3	-390.4 ± 16.7	-334.7 ± 8.4	-320.1^{f} , -317.1^{i} , -315.5^{k}	
SiH ₂ Br	0.01575	-2864.10143	97.9	85.5					
SiHBr ₂	0.00987	-5437.11884	-13.5	-31.4					
SiBr ₃	0.00348	-8010.13641	-126.7	-148.8		-201.7 ± 63	-159.0 ± 25.2		
SiH ₂ -T	0.01178	-290.43496	356.4	354.8					
SiH ₂ -S	0.01146	-290.46571	274.8	273.1				284.9 ^f , 274.9 ^h ,	270.3 ± 2.9
SiHF-T	0.00800	-389.69375	13.3	11.9					
SiHF-S	0.00816	-389.75282	-141.4	-143.0				-149.4 ^f , -158.2 ^h ,	
SiF ₂ -T	0.00436	-488.94597	-312.2	-312.7				, ,	
SiF ₂ -S	0.00442	-489.06669	-629.0	-629.7	-631.0	-587.9 ± 12.6	-589.9 ± 8.4	-627.0^{f} , -640.2^{h} , -632.2^{j}	$-595.8 \pm 6.7^{\circ} \\ -637.6 \pm 6.3^{\circ}$
SiHCl-T	0.00734	-749.94238	206.7	205.5					
SiHCI-S	0.00746	-749.99584	66.7	65.3				71.1 ^f , 62.8 ⁱ ,	
SiCl ₂ -T	0.00268	-1209.44624	65.8	66.1					
SiCl ₂ -S	0.00266	-1209.53194	-159.3	-159.0	-160.3	-168.6 ± 3.3	-168.6 ± 3.3	-157.3^{f} , -161.5^{i} , -165.1^{k}	$-159.0 \pm 8.4^{\circ}$
SiHBr-T	0.00702	-2863.44651	263.3	254.7				, ,	
SiHBr-S	0.00716	-2863.49836	127.5	118.8					
SiBr ₂ -T	0.00199	-5436.45669	173.1	158.9					
SiBr ₂ -S	0.00201	-5436.53479	-32.0	-46.3		-52.3 ± 16.7	-46.0 ± 8.4		-46.0 + 8.4
Si-H	0.00452	-289.84243	361.8	363.0	363.9	376.7 + 8.4		383.7 ^f , 376.1 ^h .	$369.0 \pm 5.0^{\circ}$
Si-F	0.00181	-389 13407	-64.7	-63.5	-62.6	-20.1 ± 12.6	-20.9 ± 25.2	-52.0^{f} , -59.4^{h} , -58.6^{j}	50510 ± 510
Si-Cl	0.00114	-749.37761	142.0	143.5	144.6	198.3 ± 6.7	154.8 ± 41.8	158.6 ^f , 152.7 ⁱ , 152.7 ^k	$154.8 \pm 8.4^{\circ}$
Si–Br	0.00090	-2862.88131	199.9	193.9	194.9	235.3 ± 46.0	196.6 ± 41.8	,,,	$203.8 \pm 8.4^{\circ}$

^aT-triplet state; ^bWith corrections of -1.25 and -1.3 kJ/mol per F-F and Cl-Cl interactions, respectively (see text for detail); for Si-X, the thermal correction from Π -doublet of ground state are included; ^cJANAF-1985 [26]; ^dEvaluation by Walsh [27]; ^eFrom G3 atomization energies [55]; ^fBAC-MP4 calculation, using 34.3 ± 2.1 kJ/mol for the enthalpy of formation of SiH₄, for silicon hydrides and chlorinated compounds [48], and fluorinated compounds [47]; ^gFluorinated silanes at MP4/6-31G(d,p) level using isodesmic reactions [49]; ^hMP4/6-31++G(2d,2p) with isodesmic reactions based on experimental SiH_n and SiF₄ [17]; ⁱChlorinated compounds at MP4/6-31+G(2d,p) level using isodesmic reactions [51]; ⁱBF_x (x=1-3), from the calculated CCSD(T)/CBS bond dissociation energies [54]; ^kSiCl_x (x=1-3), from the calculated G2(MP2) bond dissociation energies [51]; ⁱFrom heat of decomposition [96,97]; ^mChemical equilibrium; ⁿFrom threshold energies in reaction of Si⁺ + SiF₄ [40]; ^pFrom photoionization of SiH_x [31]; ^qFrom collision-induced dissociation and charge transfer reactions [41]; ^rFrom chemical equilibrium study [28].

 $SiHBr_3 + H_2 \rightarrow SiH_2Br_2 + HBr$

Table 4

$$\Delta_r H_{298\,\text{K}}^\circ = 86.2 \pm 6.3 \,\text{kJ/mol}(\text{Expt}), \, 80.8 \,\text{kJ/mol}(\text{G3(CC)})$$

 $SiH_2Br_2+H_2 \rightarrow SiH_3Br+HBr$

 $\Delta_r H_{298 \text{ K}}^\circ = 80.3 \pm 2.1 \text{ kJ/mol}(\text{Expt}), 79.9 \text{ kJ/mol}(\text{G3(CC)})$

where halosilanes were quantified using electron impact ionization mass spectrometry. Large discrepancies between measurements and G3(CC) are observed for hydrogenation of SiF₄, SiH₂F₂, and

SiCl₄. Possible source of error in the experiment is the concentration determination, where the observed appearance energies for SiH₃F, SiH₂F₂, SiHF₃, and SiHCl₃ are 13.0, 11.0, 11.0 \pm 1.0 eV, and 12.5 \pm 1 eV, being significantly different from the G3(CC) vertical IEs of 12.93, 13.06, 14.60, and 12.00 eV and adiabatic IE_as of 11.81, 12.27, and 13.03, and 11.6 eV to structures closest to their neutrals (Table 1).

For $\Delta_{\rm f} H^{\circ}_{\rm 298\,K}$ of fluorosilanes, both Walsh [27] and JANAF-1985 [26] preferred the estimations from linear interpolation between

SiH₄ and SiF₄ and disregarded the equilibrium studies by Farber and Srivastava [103]. Walsh claimed that "there is some unassessed source of error" in the experimental data but also agreed that fluorosilanes are most likely to deviate from linear interpolation. G3(CC) agrees with the linear interpolation estimations for SiHF₃ only, -1198.5 vs -1200.8 kJ/mol, and the discrepancies for SiH₃F and SiH₂F₂ are more than 20 kJ/mol. On the other hand, G3(CC) agrees with previous G3, BAC-MP4, and other MP4 prediction using isodesmic reactions [17,48,49,55].

For $\Delta_{\rm f} H^{\circ}_{298\,\rm K}$ of chlorinated and brominated silanes, Walsh [27] recommended the results from Farber and Srivastava [103-105]. Alternatively, JANAF-1985 [26] recommended $\Delta_{\rm f} H^{\circ}_{298\,\rm K}({\rm SiHCl}_3) =$ $-496.2 \pm 4.2 \text{ kJ/mol}$ from the averaged enthalpy difference between SiHCl₃ and SiCl₄ from the equilibrium studies, and applied linear interpolation to SiH₂Cl₂ and SiH₃Cl. For bromosilanes, IANAF-1985 [26] suggested values of -78.2 ± 17 , -190.4 ± 17 , and -302.9 ± 17 kJ/mol for SiH₃Br, SiH₂Br₂, and SiHBr₃ from the linear interpolation between SiH₄ and SiBr₄ (using the original GG value for SiH₄). Values for SiH₃Cl, SiH₂Cl₂, and SiHCl₃ from Walsh $(-135.6 \pm 10.5, -315.1 \pm 8.4, and -499.2 \pm 7.0 \, kJ/mol)$ and JANAF-1985 $(-141.8 \pm 8, -320.5 \pm 12.6, \text{ and } -496.2 \pm 4.2 \text{ kJ/mol})$ agree closely within 6 kJ/mol, while those by Walsh agree slightly better with our G3(CC) predictions (-135.6, -310.5, and -488.5 kJ/mol). The JANAF values for bromosilanes are in excellent agreement with our G3(CC) predictions within 2 kJ/mol, while Walsh's recommendations are differed to G3(CC) values by 10 kJ/mol or more for SiH₂Br₂ and SiH₃Br. The G3(CC) results also agree closely with previous G3, BAC-MP4, and MP4 calculations on chlorosilanes with isodesmic reaction schemes [47,49,55].

Enthalpies of formation of the most stable silane cations are also predicted here using the G3(CC) results for neutral and the adiabatic IE_as (Table 5). For ion complex structures, one of the low-frequency vibrational modes is treated as internal rotation. The experimental studies were available to SiH₄⁺ and SiF₄⁺ only. Alternatively, theoretical studies were available to SiF_x⁺ at CCSD(T)/CBS level [54], SiH_xF_{4-x}⁺ at MP4/6-31G(d,p) level [29], and SiCl_x⁺ at G2MP2 level [51].

For SiH₄⁺, Berkowitz et al. [31] obtained $\Delta_{\rm f} H^{\circ}_{0\,\rm K} = 1101.2 \pm$ 3.4 kJ/mol from the adiabatic IE(SiH₄) (with original GG value for SiH₄), with which the G3(CC) value of 1104.7 kJ/mol agrees excellently. For SiF₄⁺, the results $\Delta_f H_{0K}^{\circ} = -132.6 \pm 5.6 \text{ kJ/mol}$ and $\Delta_{\rm f} H^{\circ}_{\rm 298\,K} = -135.9 \pm 5.6 \, \text{kJ/mol}$ from Fisher et al. [41] are lower than G3(CC) values of -91.2 and -95.3 kJ/mol because of the discrepancy in the calculated and measured IE_a as discussed in previous section. Theoretically, Bauschlicher et al. [51] predicted $\Delta_{\rm f} H^{\circ}_{0\,\rm K}({\rm SiCl_4}^+ - {\rm C}_{2\rm V}) = 465.7$ and $\Delta_{\rm f} H^{\circ}_{298\,\rm K} = 464.5\,\rm kJ/mol$ for SiCl₄⁺- C_{2V} from G2MP2 calculations for cation with C_S symmetry, being slightly higher than our G3(CC) values of 453.6 and 452.3 kJ/mol for SiCl₄⁺-C_{2V}. Ignacio and Schlegel [29] also predicted values of 735.6, 350.7, -20.4, and -137.2 kJ/mol for $\Delta_f H_{298K}^{\circ}$ of SiH₃F⁺, SiH₂F₂⁺, SiHF₃⁺, and SiF₄⁺ based on MP4/6-31G(d,p) calculations with isodesmic reaction scheme. The differences to G3(CC) values of 738.6, 378.1, 18.7, and -95.3 kJ/mol increase with the degree of fluorination.

3.8. Enthalpies of formation of halogenated silyl, silylene, and silylidyne radicals and cations (Tables 4 and 5)

Walsh [27] and JANAF-1985 [26] have summarized early studies on SiX_n (X = H, F, Cl, Br) radicals. Recently, Hilderbrand et al. [28] obtained new values for SiX_{1,2} (X = Cl, Br) from equilibrium studies. For cations, the experimental enthalpies of formation are available to SiH_x⁺ [31,38,39], SiF_x⁺ [40–42], SiCl_x⁺ [43,44], and SiH₂Cl⁺ and SiHCl₂⁺ [45,46] from photoionization and ion-chemistry studies, from which the enthalpies for some of their neutral radicals were also derived. The results for SiF_x^+ and $SiCl_x^+$ carry large uncertainties as discussed above. Theoretical studies were also performed on $SiH_mF_n^{0,+1}$ at MP4/6-31G(d,p) level [29], on $SiF_n^{0,+1}$ at G2 and CCSD(T)/CBS level [54], and $SiCl_n^{0,+1}$ at G2(MP2) and CCSD(T)/AVQZ level [51].

3.8.1. SiH_x and SiH_x⁺

Jasinski et al. [106] reviewed the experimental and theoretical studies on the thermochemistry of SiH_x radicals prior to 1995. Of the values listed, the ones from photoionization studies of SiH_x by Berkowitz et al. [31] were preferred. With the original GG value for SiH₄, $\Delta_f H_{0K}^{\circ}$ for SiH₃, SiH₂, and SiH are revised to 195.0 ± 6.7 , 270.3 ± 2.9 , and 369.0 ± 5.0 kJ/mol, respectively, being supported by G3(CC) predictions of 200.7, 274.8, and 361.8 kJ/mol, and previous CCSD(T)/CBS studies [59].

There have been several studies on the enthalpy of formation of SiH⁺. JANAF-1985 [26] adopted the value by Douglas and Lutz [107], who derived $\Delta_{f}H_{0K}^{\circ} = 1140.3 \pm 11.3 \text{ kJ/mol}$ from the estimated $D_0(\text{Si}^+-\text{H})$ using w_e and $w_e x_e$ of the excited A-state of SiH⁺. Later, Elkind and Armentrout [39] reported $\Delta_{f}H_{0K}^{\circ} = 1135.6 \pm 5.9 \text{ kJ/mol}$, from $D_0(\text{Si}^+-\text{H}) = 3.23 \pm 0.04 \text{ eV}$ obtained from threshold behavior of Si⁺ + H₂ \rightarrow SiH⁺ + H. Berkowitz et al. [31] reported more decisive $\Delta_{f}H_{0K}^{\circ} = 1133.8 \pm 5.0 \text{ kJ/mol}$ from photoionization study (corrected to GG's original value for SiH₄). G3(CC) predicts $\Delta_{f}H_{0K}^{\circ} = 1127.8 \text{ kJ/mol}$ ($\Delta_{f}H_{298K}^{\circ} = 1129.1 \text{ kJ/mol}$), which supports the value by Berkowitz et al.

For SiH₂⁺, Berkowitz et al. obtained $\Delta_{\rm f} H^{\circ}_{0\,\rm K} = 1153 \pm 2.5 \,\rm kJ/mol$ from appearance energy of $SiH_2^+ + H_2$ from photoionization of SiH₄ [31], and Boo and Armentrout obtained a closely agreed value of $1151 \pm 7 \text{ kJ/mol}$ from the endothermicity of reactions $Si^+ + C_2H_6/C_3H_8/C_2H_4/C_2D_6 \rightarrow SiH_2^+/SiD_2^+ + C_2H_4/C_3H_6/C_2H_2/C_2D_4$ [38]. Our G3(CC) value of 1151.7 kJ/mol agrees with both values within their uncertainty ranges. For SiH₃⁺, Berkowitz et al. also obtained $\Delta_{\rm f} H^{\circ}_{0\,\rm K} < 989.9\,\rm kJ/mol$ from the appearance energy of SiH₃⁺ [31], and Boo and Armentrout [38] obtained $\Delta_{\rm f} H^{\circ}_{\rm OK} = 987.4 \pm 8.4 \, \text{kJ/mol}$ from $\Delta_{\rm r} H^{\circ}_{\rm OK}$ of $88.0 \pm 4.8 \, \text{kJ/mol}$ for $Si^+ + SiH_4 \rightarrow SiH_3^+ + SiH$, comparing to G3(CC) of 80.0 kJ/mol. Both values agree excellently with our G3(CC) prediction of 987.1 kJ/mol. However, the agreement with the latter is fortuitous to some extend because of the cancellation of the differences between experiment and theory: $\Delta(\Delta_r H_{0K}^{\circ}) \sim 8 \text{ kJ/mol}, -\Delta[\Delta_f H_{0K}^{\circ}(\text{SiH})] \sim -13 \text{ kJ/mol}$ $(374.9 \pm 7.1 \text{ kJ/mol } vs 361.8 \text{ kJ/mol}), \Delta[\Delta_{f}H^{\circ}_{0 \text{ K}}(\text{Si}^{+})] \sim 2 \text{ kJ/mol}, \text{ and}$ $\Delta [\Delta_f H_{0K}^{\circ}(SiH_4)] \sim 4 \text{ kJ/mol} (CATCH/JANAF revision).$

3.8.2. SiX (X = F, Cl, Br) radicals

Enthalpies of formation of SiF, SiCl, and SiBr have been obtained from the equilibrium studies. Both JANAF-1985 [26] and Walsh [27] suggested $\Delta_{\rm f} H^{\circ}_{298\,\rm K}(\rm SiF) \sim -20\,\rm kJ/mol$ from equilibrium of Si(g)+SiF₂ \rightarrow 2SiF using a dubious value for $\Delta_{\rm f} H^{\circ}_{298\,\rm K}(\rm SiF_2)$. The value is significantly higher than our G3(CC) prediction of -62.6 kJ/mol and other theoretical values from -52 to -60 kJ/mol [29,54]. For $\Delta_{\rm f} H^{\circ}_{298\,\rm K}$ of SiCl and SiBr, Walsh [27] recommended 155 ± 42 and 197 ± 42 kJ/mol and JANAF [26] suggested higher values of 198.3 ± 6.7 and 235 ± 46 kJ/mol from equilibrium of Si(g/s)+SiX₂ \rightarrow 2SiX. Recently, Hilderbrand et al. [28] obtained $\Delta_{\rm f} H^{\circ}_{298\,\rm K}(\rm SiCl) = 154.8 \pm 8.4\,\rm kJ/mol$ and $\Delta_{\rm f} H^{\circ}_{298\,\rm K}(\rm SiBr) = 203.8 \pm 8.4\,\rm kJ/mol$ from the equilibria of Si(g)+X \rightarrow SiX. The values agreed with Walsh's recommendation, and are *ca.* 10 kJ/mol higher than our G3(CC) predictions of 144.6 and 194.9\,\rm kJ/mol, while the value for SiCl was supported by other theoretical predictions of 153–159\,\rm kJ/mol

Table 5

The enthalpies of formation for the most stable cations derived from atomization energies, along with the literature values (in kJ/mol)

Neutral	Cations	$\Delta_{\rm f} H^\circ$ [G3(CC)]		$\Delta_{ m f} H^{\circ}$ (literature values)		
		0 K	298 K	0 K	298 K	
Si	Si ⁺	1229.9	1234.0	1232.2 ± 4^{b}		
SiH	SiH*	1127.8	1129.1	$\begin{array}{c} 1140.3 \pm 11.3^c \\ 1135.6 \pm 5.9^e \\ 1133.8 \pm 5.0^f \end{array}$	1136.0 ^d	
SiF	SiF ⁺	650.1	651.2		$\begin{array}{c} 641.5^{\text{d}}, 706.8 \pm 9.2^{\text{g}} \\ 635.3 \pm 4.6^{\text{h}} \\ 651.1^{\text{j}} \end{array}$	
SiCl	SiCl ⁺	850.1	851.3		$\begin{array}{c} 909 \pm 29^k \\ 847 \pm 10.5^l \text{, } 850.1^m \end{array}$	
SiBr SiH2 SiHF	SiBr ⁺ SiH ₂ ⁺ SiHF ⁺	907.2 1151.7 772.0	901.0 1150.1 770.5	$1153 \pm 2.5^f, 1151 \pm 7^n$	1140.6 ^d 753.6 ^d	
SiF ₂	SiF ₂ +	422.7ª	422.0 ^a		$\begin{array}{c} 449.9 \pm 8.4^{\rm g}, 404 \pm 5^{\rm l} \\ 396.3^{\rm d}, 403.8^{\rm j} \end{array}$	
SiHCl SiCl ₂ SiHBr SiBr-	SiHCl ⁺ SiCl ₂ ⁺ SiHBr ⁺ SiBr-, ⁺	950.8 770.0ª 1000.7 867.9	949.4 769.9 ^a 991.9 853.3		$773.6 \pm 10.9^l,761.1^m$	
SiH ₂ SiH ₂ F SiHF ₂	SiH_2^+ SiH ₂ F ⁺ SiHF ₂ ⁺	987.1 610.9 233.5ª	981.5 605.5 229.1ª	<989.9 ^f , 987.4±8.4 ^o	973.7 ^d 582.1 ^d 202.2 ^d	
SiF ₃	SiF ₃ +	-104.2 ^a	-107.3ª		$\begin{array}{c} -105.5\pm18.8^{g}\\ -122.6\pm2.5^{p}\\ -137.6^{d}, -132.1^{j} \end{array}$	
SiH2Cl SiHCl2 SiCl3 SiH2Br SiHBr2	SiH ₂ Cl ⁺ SiHCl ₂ ⁺ SiCl ₃ ⁺ SiH ₂ Br ⁺ SiHBr ₂ ⁺	798.2 613.8ª 440.8ª 853.2 726.9	793.0 610.1 ^a 439.3 ^a 840.6 708.7		$\begin{array}{c} 765.7 \pm 16.8^{q} \\ 585.0 \pm 18.4^{q} \\ 421 \pm 13^{k}, 421.0^{m} \end{array}$	
SiBr ₃ SiH ₄ SiH ₃ F SiH ₂ F ₂ SiHF ₃ SiF ₄ SiH ₃ Cl	$SiBr_{3}^{+}$ $SiH_{2}^{+}-H_{2}, C_{S}$ $SiHF^{+}-H_{2}, C_{1}$ $SiF_{2}^{+}-H_{2}, C_{S}$ $SiF_{2}^{+}-FH, C_{1}$ SiF_{4}^{+}, C_{2V} $SiHCl^{+}-H_{2}, C_{1}$	609.8 1104.7 745.1 385.1 ^a 24.7 ^a -91.2 ^a 933.8	587.1 1096.9 738.6 378.1 ^{a*} 18.7 ^{a*} -95.3 ^a 927.8		1107.2 ^d 735.6 ^d 350.7 ^d -20.4 ^d -137.2 ^d , -133.8 ^j	
S1H2Cl2 SiHCl3 SiCl4 SiH3Br SiH2Br2 SiHBr3 SiBr4	SICl2 ⁺ -H2, C _S SiCl2 ⁺ -ClH, C ₁ SiCl ₄ ⁺ , C _{2V} SiH ₃ Br ⁺ , C _S SiH ₂ Br ₂ ⁺ , C _{2V} SiBr ₂ ⁺ -BrH, C ₁ SiBr ₄ ⁺ , C _{2V}	759.0 ^a 593.3 ^a 453.6 ^a 980.0 846.8 757.5 629.4	755.5 ^a 590.4 ^{a*} 452.3 ^a 965.0 825.5 732.8 [*] 600.0		445.7 ^m	

^aCorrections for F–F and Cl–Cl interactions (-1.25 and -1.3 kJ/mol per interaction) applied; values with asterisk (*) have been corrected for thermal energy of internal rotation; ^bFrom JANAF table [26]; ^cFrom vibrational terms [107]; ^dFrom BAC-MP4/6-31G(d,p) [29]; ^eFrom reaction Si⁺ + H₂ \rightarrow SiH⁺ + H [39]; ^fFrom photoionization, lowered by 1 kcal/mol [31]; ^gFrom ion chemistry [40]; ^hFrom ion chemistry [41]; ⁱFrom BAC-MP4/6-31G(d,p) [29]; ^jFrom CCSD(T)/CBS [54]; ^kFrom ion chemistry [43]; ¹From ion chemistry [44]; ⁿFrom CCSD(T)/AVQZ calculation [51]; ⁿFrom ion-chemistry [38]; ^oFrom reaction Si⁺ + SiH₄ \rightarrow SiH₃⁺ + SiH [38]; ^pFrom ion chemistry [42]; ^qFrom ion-molecule reaction [45,46].

3.8.3. Silylene radicals

For $\Delta_{f}H_{298\,K}^{\circ}(SiF_{2})$, JANAF-1985 [26] and Walsh [27] suggested two closely agreed values of -587.9 ± 12.6 and -589.9 ± 8.4 kJ/mol. Afterwards, Fisher et al. [41] obtained a lower value of -637.6 ± 6.3 kJ/mol from the threshold energy for Si⁺ + SiF₄ \rightarrow SiF₂ + SiF₂⁺. Theoretical studies have obtained relatively consistent values in the range of -627 to -640 kJ/mol [29,54] and -631.0 kJ/mol from G3(CC), which support the later ion chemistry study. However, the agreement is fortuitous because the measured $\Delta_{f}H_{298\,K}^{\circ}$ (SiF₂ + SiF₂⁺) of -151.4 ± 12.6 kJ/mol from the threshold is much higher than the theoretical predictions of -243.9 kJ/mol from BAC-MP4/6-31G(d,p) [29], -228.4 kJ/mol from CCSD(T)/CBS [54], and -206.4 kJ/mol from G3(CC) here. Neither $\Delta_{f}H_{298\,K}^{\circ}(SiF_{2})$ nor $\Delta_{f}H_{298\,K}^{\circ}(SiF_{2}^{+})$ reported by Fisher et al. [41] was reliable.

For SiCl₂ and SiBr₂, JANAF-1985 [26] and Walsh [27] summarized the equilibrium studies on Si(s/g) + SiCl₄/SiBr₄ \rightarrow 2SiCl₂/SiBr₂ and obtained $\Delta_{\rm f}H^{\circ}_{298\,\rm K}({\rm SiCl_2}) = -168.6 \pm 3.3\,\rm kJ/mol$, and $\Delta_{\rm f}H^{\circ}_{298\,\rm K}({\rm SiBr_2}) = -52.3 \pm 16.7\,\rm kJ/mol$ (JANAF) or $-46.0 \pm 8.4\,\rm kJ/mol$ (Walsh). Recently, Hilderbrand et al. [28] obtained $\Delta_{\rm f}H^{\circ}_{298\,\rm K} = -159.0 \pm 8.4$ and $-46.0 \pm 8.4\,\rm kJ/mol$ for SiCl₂ and SiBr₂ from equilibrium of Si(g) + 2Cl/Br \rightarrow SiCl₂/SiBr₂. The later values are supported excellently by G3(CC) predictions of -160.3 and $-46.3\,\rm kJ/mol$. The value for SiCl₂ is also supported by other theoretical predictions of -157 to $-165\,\rm kJ/mol$ [47,50,51].

No experimental study is available for $\Delta_{\rm f} H^{\circ}_{298\,\rm K}$ (SiHX). G3(CC) predictions are -143.0, 65.3, and 118.8 kJ/mol for X = F, Cl, and Br, respectively. Previous theoretical studies have obtained $\Delta_{\rm f} H^{\circ}_{298\,\rm K}$ (SiHF) = -149.4 kJ/mol at BAC-MP4 level [47] or -158.2 kJ/mol at MP4/6-31++G(2d,2p) level with isodesmic reac-

tion [17], and $\Delta_{f}H_{298\,K}^{\circ}(SiHCl) = 71.1 \text{ kJ/mol at BAC-MP4 level [48]}$ or 62.8 kJ/mol at MP4/6-31+G(2df,p) level with isodesmic reaction [50]. Note that RHF wavefunction instability is found for ground states of SiHX, and UHF wavefunctions are used for post-HF calculations.

The singlet-triplet (S-T) separations of silylene radicals are important parameters in assessing the reactivity of their reactivity. The S-T experimental separations determined from spectroscopic data [66] are 87.8 ± 2.9 kJ/mol ($T_0 = 7340 \pm 240$ cm⁻¹), 314.9 kJ/mol (26319 cm⁻¹), and 226.6 kJ/mol (18943 cm⁻¹) for SiH₂, SiF₂, and SiCl₂. Value of 78.2 kJ/mol (0.81 eV) for SiH₂ can also be inferred from the measured IEs for singlet (9.05 eV) and triplet (8.24 eV) [31]. The G3(CC) values of 316.8 and 225.1 kJ/mol for SiF₂ and SiCl₂ are in excellent agreement with the spectroscopic determination. The G3(CC) prediction of 81.6 kJ/mol for SiH₂ is slightly lower than the spectroscopic determination, while being in better agreement with the photoionization study. The increased S-T separations of 81.6 to 140.0 to 225.1 kJ/mol for SiH₂, SiHCl, and SiCl₂ at G3(CC) level are in accordance with the decreased reactivity, e.g., the increased barrier heights from -2 to 64 to 164 kJ/mol for their insertion to H₂ at CCSD(T)/CBS level [108], and the increasing barrier height and the decreasing A-factor from insertions of SiHCl and SiCl₂ to H₂ from kinetics study [109].

3.8.4. SiX_3 (X = F, Cl, Br) radicals

Using $D(F_3Si-H)$ and $D(Cl_3Si-H)$ of 419 ± 5 and 382 ± 6 kJ/mol from the kinetic iodination technique and the estimated D(Br₃Si-H) of $364 \pm 21 \text{ kJ/mol}$, Walsh [27] obtained $\Delta_f H_{298K}^{\circ}$ (SiX₃) of -1000 ± 21 , -335 ± 8 , and $-159 \pm 25.2 \text{ kJ/mol}$ for X = F, Cl, and Br, respectively, comparing to G3(CC) values of -992.1, -317.3, and -148.8 kJ/mol. At G3(CC) level, the corresponding $D(\text{SiX}_3-\text{H})$ values are 424.4, 384.2, and 374.4 kJ/mol. While the G3(CC) predictions on SiF₃ and SiBr₃ agree with Walsh's estimations, the discrepancy on $\Delta_{f} H_{298 \, \text{K}}^{\circ}(\text{SiCl}_{3})$ can be ascribed mostly to the differences in $\Delta_{\rm f} H^{\circ}_{298\,\rm K}$ (SiCl₃H). JANAF [26] also listed a significantly different set of values, where those for SiF₃ and SiCl₃ were from the equilibrium study of SiX₂(g) + SiX₄(g) \rightarrow 2SiX₃(g) and that for SiBr₃ from the averaged Si-Br bond dissociation energy in SiBr₄. The results $(-1085.3 \pm 16.7, -390.4 \pm 16.7, and -201.7 \pm 6.3 \text{ kJ/mol})$ are significantly lower than the G3(CC) predictions. For SiF₃, the G3(CC) result also agrees with previous predictions from -993 to -1007 kJ/mol for SiF₃ at levels of BAC-MP4 [48], MP4 with isodesmic reaction [17,29], and CCSD(T)/CBS [54] etc, and similarly for SiCl₃ at MP4 level with isodesmic reaction schemes [48,50] and G2MP2 level [51].

3.8.5. SiF^+ , SiF_2^+ , and SiF_3^+

Weber and Armentrout [40] first reported $\Delta_f H^\circ_{298\,K}$ of 706.8 \pm 9.2, 449.9 \pm 8.4, and $-105.5 \pm$ 18.8 kJ/mol ($\Delta_f H^\circ_{0K}$ of 705.7, 450.6, and -102.4 kJ/mol using present B3LYP thermal corrections) for SiF⁺, SiF₂⁺, and SiF₃⁺, respectively, from the measured thresholds for reactions Si⁺ +BF₃ \rightarrow SiF⁺ +BF₂, Si⁺ +SiF₄ \rightarrow SiF₂ + SiF₂⁺, and Si⁺ +SiF₃ \rightarrow SiF⁺ +BF₂, Si⁺ +SiF₄ \rightarrow SiF₂ +SiF₂⁺, and Si⁺ +SiF₃ \rightarrow SiF⁺ +BF₂ of -589.9 ± 4.2 kJ/mol used there is markedly lower than the recent CCSD(T)/CBS prediction of -497.5 kJ/mol [110]. Neither $\Delta_f H^\circ_{298\,K}$ (SiF₂⁺) was reliable as discussed above. The measured threshold of 239.2 \pm 13.5 kJ/mol for SiF₃⁺ is also significantly higher than G3(CC) prediction of 207.0 kJ/mol, even though the resulted $\Delta_f H^\circ_{298\,K}$ (SiF₃⁺) agrees with G3(CC) prediction of -107.3 kJ/mol.

The results for SiF⁺ and SiF₂⁺ by Weber and Armentrout [40] were later disregarded by Fisher et al. [41], who instead reported $\Delta_{\rm f}H_{298\,\rm K}^{\circ} = 635.2 \pm 4.6$ and $404 \pm 5\,\rm kJ/mol$ for SiF⁺ and SiF₂⁺ from measured $D_0(\rm Si^+-F) = 679.3 \pm 5.8\,\rm kJ/mol$, $D_0(\rm SiF^+-F) = 306.8 \pm 3.9\,\rm kJ/mol$ from the collision-induced dissoci-

ation studies. The measured $D_0(Si^+-F)$ is significantly higher than the theoretical predictions of 647.6 (G2 [54]), 663.1 (CCSD(T)/CBS [53,54]), and 657.1 (G3(CC)) kJ/mol, and the measured $D_0(SiF^+-F)$ is supported by G3(CC) prediction of 304.5 kJ/mol. Consequently, the results for SiF⁺ and SiF₂⁺ by Fisher et al. [41] are systematically lowered than G3(CC) values by 15–20 kJ/mol while being supported by BAC-MP4/6-31G(d,p) predictions of 641.5 and 396.3 kJ/mol [29]. $\Delta_f H_{298 \text{ K}}^{\circ}(SiF_3^+)$ was also re-determined by Kickel et al. [42] as -126.1 kJ/mol, being lower than G3(CC) values of -107.3 kJ/mol at 298 K, higher than BAC-MP4/6-31G(d,p) of -137.6 kJ/mol [29], and agreeing with CCSD(T)/CBS of -132.1 kJ/mol [54].

3.8.6. $SiCl^+$, $SiCl_2^+$, and $SiCl_3^+$

The earlier measurements on SiCl⁺ using the appearance energies from SiCl₂ were rather diverse, e.g., two appearance energies were reported as $12.50 \pm 0.10 \,\text{eV}$ [73] and $11.8 \pm 0.2 \,\text{eV}$ [111]. Alternatively, Weber and Armentrout [43] obtained $\Delta_{\rm f} H^{\circ}_{298\,\rm K}({\rm SiCl^+}) = 902 \pm 29\,\rm kJ/mol$ and $\Delta_{\rm f} H_{298\,\rm K}^{\circ}$ (SiCl₂⁺) = 774 ± 11 kJ/mol from thresholds for reactions of $Si^{2+O}RiCl_4 \rightarrow SiCl^+ + Cl + SiCl_2$ and $Si^+ + SiCl_4 \rightarrow SiCl_2^+ + SiCl_2$. The measured threshold of $280 \pm 29 \text{ kJ/mol}$ for the first reaction is significantly higher than G3(CC) prediction of 240.1 kJ/mol, and the second threshold of $39 \pm 10 \text{ kJ/mol}$ coincidences with G3(CC) of 40.3 kJ/mol. The results were uncertain because $\Delta_{f} H_{208 K}^{\circ}(SiCl_{2})$ was not well established. Later, Fisher and Armentrout [44] disregarded the results and reported two new values of 847 ± 10.5 and 773.6 \pm 10.9 kJ/mol for the enthalpies of formation of SiCl⁺ and $SiCl_2^+$ from reaction thresholds of $Ar^+ + SiCl_4 \rightarrow Ar + SiCl^+ + Cl + Cl_2$ and $Ar^+ + SiCl_4 \rightarrow Ar + SiCl_2^+ + 2Cl$. The measured thresholds of 16.91 and 17.34 eV are supported by G3(CC) predictions of 16.89 and 17.24 eV, respectively. Consequently, the resulted enthalpies of formation are supported by G3(CC) predictions of 851.3 and 771.1 kJ/mol and CCSD(T)/AVQZ predictions [51] of 850.1 and 761.1 kJ/mol for SiCl⁺ and SiCl₂⁺, respectively.

For SiCl₃⁺, Weber and Armentrout [43] first proposed $\Delta_f H^{\circ}_{298\,\text{K}} = 421 \pm 13 \text{ kJ/mol}$ from simple average of a few appearance energies of SiCl₃⁺ from dissociative ionization of SiCl₄ and HSiCl₃. Fisher and Armentrout [44] later reported value of $411 \pm 6.7 \text{ kJ/mol}$ from threshold of O₂⁺ + SiCl₄ \rightarrow O₂ + SiCl₃⁺ + Cl, being lower than the theoretical predictions are 421.0 kJ/mol at CCSD(T)/CBS level [51] and 439.3 kJ/mol at G3(CC) level.

Compared to previous theoretical studies, G3(CC) values of 851.3, 769.8, 439.3, and 452.3 kJ/mol for $\Delta_{\rm f}H^{\circ}_{298\,\rm K}$ (SiCl_n⁺, n=1-4) agree with the G2(MP2) results of 857.0, 773.7, 439.8, and 464.5 kJ/mol for SiCl⁺, SiCl₂⁺, and SiCl₃⁺, and with the CCSD(T)/AVQZ ones of 850.7, 754.9, 421.0, and 445.7 kJ/mol [51] on SiCl⁺ and SiCl₄⁺ only.

3.8.7. SiH_2Cl^+ and $SiHCl_2^+$

Murthy and Beauchamp [45,46] measured the energetics of SiH_2Cl^+ and $SiHCl_2^+$ relative to $SiCl_3^+$ from the kinetics of the following ion–molecular reactions:

$$\begin{split} &\text{SiCl}_3^+ + \text{SiHCl}_3 \rightarrow \text{SiHCl}_2^+ + \text{SiCl}_4 \\ &\Delta_r H_{298\,\text{K}}^\circ = -0.4 \pm 0.8\,\text{kJ/mol(Expt)}, \ -2.2\,\text{kJ/mol(G3(CC))} \\ &\text{SiCl}_3^+ + \text{SiH}_2\text{Cl}_2 \rightarrow \text{SiHCl}_2^+ + \text{SiHCl}_3 \end{split}$$

$$\Delta_{\rm r} H_{298\,\rm K}^{\circ} = -3.8 \pm 1.3 \,\rm kJ/mol(Expt), -7.3 \,\rm kJ/mol(G3(CC))$$

$$SiCl_3{}^+ + SiH_2Cl_2 \rightarrow SiH_2Cl^+ + SiCl_4$$

 $\Delta_r H_{298 \, \text{K}}^{\circ} = 2.9 \pm 1.3 \, \text{kJ/mol(Expt.)}, 4.0 \, \text{kJ/mol(G3(CC))}$

$$\begin{split} \text{SiHCl}_2^+ + \text{SiH}_2\text{Cl}_2 &\rightarrow \text{SiH}_2\text{Cl}^+ + \text{SiHCl}_3 \\ \Delta_r H^\circ_{298\,\text{K}} = 4.2 \pm 0.8\,\text{kJ/mol(Expt)}, \, 6.3\,\text{kJ/mol(G3(CC))} \end{split}$$

- 290 N - 57 N - 57 N - 57

 $SiHCl_2^+ + SiH_3Cl \rightarrow SiH_2Cl^+ + SiH_2Cl_2$

 $\Delta_r H_{298\,K}^{\circ} = 5.9 \pm 1.3 \,\text{kJ/mol(Expt)}, 8.0 \,\text{kJ/mol(G3(CC))}$

 $SiHC{l_2}^+ + SiH_4 \rightarrow SiH_2Cl^+ + SiH_3Cl$

 $\Delta_{\rm r} H_{\rm 298\,K}^{\circ} = 12.1 \pm 1.3 \, \rm kJ/mol(Expt), \, 16.7 \, \rm kJ/mol(G3(CC))$

The G3(CC) enthalpies of reactions are in close agreement with the measurements, and the enthalpy differences between SiH₂Cl⁺ and SiHCl₂⁺ to SiCl₃⁺, 349.8 and 168.1 kJ/mol, are in accordance with the experimental values of 354.4 \pm 10.0 and 173.6 \pm 11.7 kJ/mol, respectively. The resulted $\Delta_{\rm f} H^{\circ}_{298\,\rm K}({\rm SiHCl_2^+}) = 585.0 \pm 18.4 \,\rm kJ/mol$ and $\Delta_{\rm f} H^{\circ}_{298\,\rm K}({\rm SiH_2Cl^+}) = 765.7 \,\rm kJ/mol$ are lower than G3(CC) predictions of 610.1 and 793.0 kJ/mol. The discrepancies arise mainly from their adoption of $\Delta_{\rm f} H^{\circ}_{298\,\rm K}({\rm SiCl_3^+}) = 411 \pm 6.7 \,\rm kJ/mol$ from Fisher and Armentrout [44].

To our knowledge, no experimental study is available on the enthalpies of formation for other radical and cations. A value for SiBr₃⁺ might be inferred from its appearance energy of 11.31 ± 0.03 eV in photoionization of SiBr₄ [75], which is lower than G3(CC) prediction of 11.54 eV. Theoretically, Ignacio and Schlegel [29] carried out MP4/6-31G(d,p) calculations on the enthalpies of formation of the fluorinated species and cations. Their results are systematically lower than our G3(CC) ones, and the discrepancies increase with the degree of fluorination to ~50 kJ/mol for SiF₄⁺, -138.8 kJ/mol by BAC-MP4 and -87.8 kJ/mol by G3(CC).

4. Conclusions

We have carried out a systematic study on fluorinated, chlorinated, and brominated silanes, radicals, and cations, on their structures, ionization energies, proton affinities of silanes, and the enthalpies of formation, at G3(CC) level. The results are compared extensively with previous experimental and theoretical studies. The hydrogenated cations are characterized by the existence of ion complex structures. The most stable cations of silvlene and silvl radicals have their classical divalent and trivalent structures; while the most stable silane cations have their non-classical ion complexes except for those of SiH₃Br and SiH₂Br₂. The presence of non-classical ground state cations for silanes implies difficulty in obtaining their adiabatic IE_as using photoelectron or photoionization studies. Previous photoelectron spectroscopy studies reported indeed the vertical IEs which are supported by current G3(CC) calculations. The transition barriers also imply complication in determining the endothermicity of certain silylene⁺ + H₂/HX channels from the appearance energies of silylene⁺ in the dissociative photoionization of halogenated silanes.

At G3(CC) level, the calculated adiabatic IE_as of SiH_x agree with the experimental values obtained from photoionization studies [31,39]; while calculations reveal significantly uncertainties on the results for SiF_x^{0,+1} and SiCl_x^{0,+1} from studies on charge-transfer and/or collision-induced dissociation reactions by the Armentrout group [40–44]. The most intriguing discrepancy is on SiF₄, where the G3(CC) IE_a of 15.74 eV is significantly higher than the values of 15.29 ± 0.08 eV from experiment [42] and 15.34 eV at CCSD(T)/AVTZ + MP2/CBS level [54]. G3(CC) PA(SiF₄) is also higher than experimental value by *ca*. 20 kJ/mol However, G3(CC) IE_a(SiF₄) is supported by current (U)CCSD(T)/CBS benchmark calculations, and similar for PA(SiF₄). G3(CC) calculations on adiabatic IE_as of fluorinated species are also supported by (U)CCSD(T)/CBS except for SiF₂ where the deviation is *ca*. 0.16 eV. Agreements and large disagreements are also found between G3(CC) and previous calculations from MP4 to CCSD(T)/CBS levels, especially for fluorinated cations [29,51,53–55,60].

The enthalpies of formation of halogenated silanes, radicals, and cations are predicted using G3(CC) atomization energies and the adiabatic IE_as. The results agrees excellently with the photoionization mass spectrometry studies on SiH_x and SiH_x^+ [31] and with previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS on neutral silanes and free radicals [29,51,53–55,60]. However, the G3(CC) results have considerable discrepancies with the previous experimental and theoretical values on the enthalpies of formation of cations, especially on fluorinated cations. We have assessed the experimental results on SiF_x^{0,+1} and SiCl_x^{0,+1} [40–44] and found that they carry considerable uncertainties. While our G3(CC) calculations on chlorinated and brominated species have normal "chemical accuracy" $(\sim 1 \text{ kcal/mol})$, the results on fluorinated species, especially on SiF₂⁺. show large discrepancies to previous CCSD(T) and BAC-MP4/6-31G(d,p) and current (U)CCSD(T)/CBS calculations.

Supporting information

The B3LYP/6-31+G(2df,p) vibrational frequencies are listed in Tables S1–S3.

Acknowledgements

We thank for the service of high performance grid computing platform SCUTGrid provided by Information Network Research and Engineering Center of South China University of Technology and financial support from National Science Foundation of China (No. 20777017).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ijms.2008.07.004.

References

- C.K. Oh, S.D. Park, H.C. Lee, J.W. Bae, G.Y. Yeom, Electrochem. Solid-State Lett. 10 (2007) H94.
- [2] Z. Wang, Y. Lou, J. Mater. Sci 42 (2007) 9920.
- [3] M. Kogelschatz, G. Cunge, N. Sadeghi, J. Phys. D 37 (2004) 1954.
- [4] G. Cunge, M. Kogelschatz, N. Sadeghi, J. Appl. Phys. 96 (2004) 4578.
- [5] K.L. Williams, E.R. Fisher, J. Vac. Sci. Technol. A 21 (2003) 1024.
- [6] A. Campo, C. Cardinaud, G. Turban, J. Vac. Sci. Technol. B 13 (1995) 235.
- [7] S.K. Murad, S.P. Beaumont, M. Holland, C.D.W. Wilkonson, J. Vac. Sci. Technol. B 13 (1995) 2344.
- [8] S. Yagi, N. Takahashi, Appl. Phys. Lett. 61 (1992) 2677.
- [9] H.O. Pierson, Handbook of Chemical Vapor Deposition, Noyes Publications/William Andrew Publishing LLC, New York, 1999.
- [10] K.L. Choy, Prog. Mater. Sci. 48 (2003) 57.
- [11] T. Sakai, A. Sakai, H. Okano, Jpn. J. Appl. Phys. 32 (1993) 3089.
- [12] C.C. Cheng, K.V. Guinn, V.M. Donnelly, J. Vac. Sci. Technol. B 14 (1996) 85.
- [13] J. Tanaka, G. Miya, J. Vac. Sci. Technol. A 25 (2007) 353.
- [14] J. Hanna, K. Shimizu, J. Organomet. Chem. 611 (2000) 531.
- [15] T. Kudo, S. Nagase, Chem. Phys. 122 (1988) 233.
- [16] M.N. Paddon-Row, S.S. Wong, Chem. Commun. (1987) 1585.
- [17] E.W. Ignacio, H.B. Schlegel, J. Chem. Phys. 92 (1990) 5404.
- [18] K.K. Das, K. Balasubramanian, J. Chem. Phys. 93 (1990) 5883.
- [19] T. Kudo, S. Nagase, Chem. Phys. Lett. 148 (1988) 73.
- [20] D. Balamurugan, M.K. Harbola, R. Prasad, Phys. Rev. A 69 (2004) 033201.
 [21] P. Jackson, N. Sandig, M. Diefenbach, D. Schroder, H. Schwartz, R. Srinivas,
- Chem, Eur. J. 7 (2001) 151.
 [22] P. Antoniotti, S. Borocci, N. Bronzolino, M. Giordani, F. Grandinetti, Eur. J. Inorg. Chem. (2006) 3010.
- [23] L. Wang, J. Zhang, J. Phys. Chem. A 112 (2008) 3454.
- [24] J. Berkowitz, G.B. Ellison, D. Gutman, J. Phys. Chem. 98 (1994) 2744.
- [25] J.B. Pedley, B.S. Iseard, CATCH Table for Silicon Compounds, University of Sussex, 1972.

- [26] M.W.J. Chase, C.A. Davies, J.R.H. Downey, D.J. Fruip, R.A. McDonald, A.N. Syverud, J. Phys. Chem. Ref. Data 14 (1985).
- [27] R. Walsh, J. Chem. Soc. Faraday Trans. 1 79 (1983) 2233.
- [28] D.L. Hildenbrand, K.H. Lau, A. Sanjurjo, J. Phys. Chem. A 107 (2003) 5448.
- [29] E.W. Ignacio, H.B. Schlegel, J. Phys. Chem. 94 (1990) 7439.
- [30] L. Wang, J. Zhang, J. Phys. Chem. 108 (2004) 10346.
- [31] J. Berkowitz, J.P. Greene, H. Cho, B. Ruscis, J. Chem. Phys. 86 (1987) 1235.
- [32] H. Bredohl, J. Breton, I. Dubois, J.M. Esteva, D. Macau-Hercot, F. Remy, J. Mol.
- Spectrosc. 199 (1999) 281. [33] G. Bosser, H. Bredohl, I. Dubois, J. Mol. Spectrosc. 106 (1984) 72.
- [34] H. Bredohl, J. Breton, I. Dubois, J.M. Esteva, D. Macau-Hercot, F. Remy, J. Mol. Spectrosc. 197 (1999) 28.
- [35] A. Marijnissen, J.J. ter Meulen, Chem. Phys. Lett. 263 (1996) 803.
- [36] R.D.J. Johnson, B.P. Tsai, J.W. Hudgens, J. Chem. Phys. 91 (1989) 3340.
- [37] L.A. Kuznetsova, N.E. Kuz'menko, Y.Y. Kuzyakov, Opt. Specktros 24 (1968) 812.
- [38] B.H. Boo, P.B. Armentrout, J. Am. Chem. Soc. 109 (1987) 3549.
- [39] J.E. Elkind, P.B. Armentrout, J. Phys. Chem. 88 (1984) 5454.
- [40] M.E. Weber, P.B. Armentrout, J. Chem. Phys. 88 (1988) 6898.
- [41] E.R. Fisher, B.L. Kickel, P.B. Armentrout, J. Phys. Chem. 97 (1993) 10204.
- [42] B.L. Kickel, E.R. Fisher, P.B. Armentrout, J. Phys. Chem. 97 (1993) 10198.
- [43] M.E. Weber, P.B. Armentrout, J. Phys. Chem. 93 (1989) 1596.
 [44] E.R. Fisher, P.B. Armentrout, J. Phys. Chem. 95 (1991) 4765.

- [44] E.K. HSHCH, D. Amitentiout, J. Phys. Chem. 95 (1951) 4705.
 [45] S. Murthy, J.L. Beauchamp, J. Phys. Chem. 99 (1992) 1247.
 [46] S. Murthy, J.L. Beauchamp, J. Phys. Chem. 99 (1995) 9118.
 [47] P. Ho, M.E. Coltrin, J.S. Binkley, C.F. Melius, J. Phys. Chem. 89 (1985) 4647.
- [48] P. Ho, C.F. Melius, J. Phys. Chem. 94 (1990) 5120.
- [49] E.W. Ignacio, H.B. Schlegel, J. Phys. Chem. 96 (1992) 5830.
- [50] M.-D. Su, H.B. Schlegel, J. Phys. Chem. 97 (1993) 8732.
- [51] C.W.J. Bauschlicher, H. Partridge, Chem. Phys. Lett. 276 (1997) 47.
- [52] M.T. Swihart, R.W. Carr, J. Phys. Chem. A 101 (1997) 7434.
- [53] A. Ricca, C.W.J. Bauschlicher, Chem. Phys. Lett. 287 (1998) 239.
- [54] A. Ricca, C.W.J. Bauschlicher, J. Phys. Chem. A 102 (1998) 876.
- [55] S.-H. Chien, W.-K. Li, N.L. Ma, J. Phys. Chem. A 104 (2000) 11398.
- [56] L.A. Curtiss, K. Raghavachari, P.C. Redfern, G. Kedziora, J.A. Pople, J. Phys. Chem. A 105 (2001) 227.
- [57] M.D. Allendrof, C.F. Melius, J. Phys. Chem. A 106 (2002) 6370.
- [58] R. Janoschek, W.M.F. Fabian, J. Mol. Struct. 780/781 (2006) 80.
- [59] D. Feller, D.A. Dixon, J. Phys. Chem. A 103 (1999) 6413.
- [60] J. Hrusak, Z. Herman, S. Iwata, Int. J. Mass. Spectrom. 192 (1996) 165.
- [61] E. Sicilia, M. Toscano, T. Mineva, N. Russo, Int. J. Quant. Chem. 61 (1997) 571
- [62] L.A. Curtiss, K. Raghavachari, P.C. Redfern, A.G. Baboul, J.A. Pople, Chem. Phys. Lett. 314 (1999) 101.
- [63] L.A. Curtiss, K. Raghavachari, P.C. Redfern, V. Rassolov, J.A. Pople, J. Chem. Phys. 109 (1998) 7764.
- [64] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J.A. Pople, J. Chem. Phys. 114 (2001) 108.
- [65] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Gaussian Inc., Wallingford, CT, 2004.

- [66] P.J. Linstrom, W.G. Mallard (Ed.)(Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov/), June 2005.
- [67] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1.
- [68] R.H. Petrmichl, K.A. Peterson, R.C. Woods, J. Chem. Phys. 89 (1988) 5454.
- [69] W.Y. Fan, Z. Liu, P.B. Davies, J. Mol. Spectrosc. 191 (1998) 98
- [70] M. Ishiguro, T. Okabayashi, M. Tanimoto, J. Mol. Struct. 352/353 (1995) 317
- [71] G. Herzberg, A. Lagerqvist, B.J. McKenzie, Can. J. Phys. 47 (1971) 1889.
- [72] N.P.C. Westwood, Chem. Phys. Lett. 25 (1974) 558.
- [73] H.R. Ihle, C.H. Wu, M. Miletic, K.F. Zmbov, Adv. Mass. Spectrom. 7 (1978) 670.
- [74] V.H. Bock, B. Solouki, G. Maier, Angew. Chem. 97 (1985) 205.
- [75] J.C. Creasey, I.R. Lambert, R.P. Tuckett, J. Chem. Soc. Faraday Trans. 87 (1991) 3717
- [76] M. Farber, R.D. Srivastava, High Temp. Sci. 12 (1980) 21.
- [77] J.M. Dyke, E.P.F. Lee, A. Morris, L. Nyulaszi, J. Elec. Spectrosc. Rel. Phenom. 66 (1993) 175.
- [78] J.M. Dyke, N. Jonathan, A. Morris, A. Ridha, M.J. Winter, Chem. Phys. 81 (1983) 481
- [79] J.H.D. Eland, Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectron Spectroscopy in the Gas Phase, Butterworths & Co., Boston, 1984.
- [80] P.I. Bassett, D.R. Llovd, Chem. Phys. Lett. 3 (1969) 22.
- [81] P.J. Bassett, D.R. Lloyd, J. Chem. Soc. A (1971) 641.
- W.E. Bull, B.P. Pullen, F.A. Grimm, W.E. Moddeman, G.K. Schweitzer, T.A. Carl-[82] son, Inorg. Chem. 9 (1970) 2472.
- [83] T.P. Fehlner, D.W. Turner, Inorg. Chem. 13 (1974) 754.
- [84] R. Basner, M. Gutkin, J. Mahoney, V. Tarnovsky, H. Deutsch, K. Becker, J. Chem. Phys. 123 (2005) 054313.
- [85] M. Sana, M. Decrem, G. Leroy, M.T. Nguyen, L.G. Vanquickenborne, J. Chem. Soc. Faraday Trans. 90 (1994) 3505.
- [86] D.C. Frost, F.G. Herring, A. Katrib, R.A.N. McLean, N.P.C. Westwood, Can. J. Chem. 49 (1971) 4033.
- [87] S. Cradock, E.A.V. Ebsworth, Chem. Commun. (1971) 57.
- [88] S. Cradock, R.A. Whiteford, J. Chem. Soc. Faraday Trans. 67 (1971) 3425.
 [89] W.B. Perry, W.L. Jolly, J. Elec. Spectrosc. Rel. Phenom. 4 (1974) 219.
- [90] S. Cradock, E.A.V. Ebsworth, R.A. Whiteford, J. Chem. Soc. Dalton Trans. 22 (1973) 2401
- [91] T.M. Cheng, F.W. Lampe, Chem. Phys. Lett. 19 (1973) 532.
- [92] Y. Ling, R.K. Milbrum, A.C. Hopkinson, D.K. Bohme, J. Am. Soc. Mass Spectrom. 10 (1999) 848.
- [93] L.A. Nicolaides, A. Rauk, M.N. Glukhovtsev, L. Radom, J. Phys. Chem. 100 (1996) 17460
- [94] E.P. Hunter, S.G. Lias, J. Phys. Chem. Ref. Data 27 (1998) 413.
- [95] K.A. Peterson, T.H.J. Dunning, J. Chem. Phys. 117 (2002) 10548.
- [96] S.R. Gunn, L.G. Green, J. Phys. Chem. 65 (1961) 779.
- [97] S.R. Gunn, L.G. Green, J. Phys. Chem. 68 (1964) 946.
- [98] P. Ho, M.E. Coltrin, J.S. Binkley, C.F. Melius, J. Phys. Chem. 90 (1986) 3399.
- [99] A.F. Sax, J. Kalcher, J. Phys. Chem. 95 (1991) 1768.
- [100] G. Katzer, M.C. Ernst, A.F. Sax, J. Kalcher, J. Phys. Chem. A 101 (1997) 3942.
- [101] M.T. Swihart, S.L. Girshick, J. Phys. Chem. B 103 (1999) 64.
- [102] H.-W. Wong, J.C.A. Nieto, M.T. Swihart, L.J. Broadbelt, J. Phys. Chem. A 108 (2004) 874.
- [103] M. Farber, R.D. Srivastava, Chem. Phys. Lett. 51 (1977) 307.
- [104] M. Farber, R.D. Srivastava, J. Chem. Thermodynam. 11 (1979) 939.
- [105] M. Farber, R.D. Srivastava, Chem. Phys. Lett. 60 (1979) 216.
- [106] J.M. Jasinski, R. Becerra, R. Walsh, Chem. Rev. 95 (1995) 1203.
- [107] A.E. Douglas, B.L. Lutz, Can. J. Phys. 48 (1970) 247.
- [108] S.P. Walch, C.E. Dateo, J. Phys. Chem. A 105 (2001) 2015.
- [109] K.L. Walker, R.E. Jardine, M.A. Ring, H.E. O'Neal, Int. J. Chem. Kinet. 30 (1998) 69
- [110] C.W.J. Bauschlicher, A. Ricca, J. Phys. Chem. A 103 (1998) 4313.
- [111] A. Olsen, F.R. Sale, J. Less-Common Met. 53 (1977) 277.